Current Osteoporosis Reports

, Volume 12, Issue 2, pp 189–193

Atypical Femoral Fractures, Bisphosphonates, and Mechanical Stress

Biomechanics (M Silva and P Zysset, Section Editors)

Abstract

Atypical fractures are stress fractures occurring in the femoral shaft and closely related to bisphosphonate use. We here discuss their radiographic definition and different putative etiologies, apart from mechanical stress. Long time reduction of skeletal remodeling because of bisphosphonate use is thought to allow time for the bone to deteriorate mechanically, resulting in reduced toughness. However, the risk of atypical fracture diminishes rapidly after cessation of treatment, which suggests more acute effects of bisphosphonate use. Microdamage normally accumulates at areas of high stress. Possibly, ongoing bisphosphonate use reduces the ability to resorb and replace areas of microdamage by targeted remodeling. This could lead to crack propagation beyond a point of no return, ending in macroscopic stress fracture.

Keywords

Atypical femoral fractures Bisphosphonates Bone remodeling Osteoporosis Bone fragility 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schilcher J. Epidemiology, radiology and histology of atypical femoral fractures. Acta Orthop Suppl. 2013;84:1–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, et al. Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int. 2008;20:1353–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CYC. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metabol. 2005;90:1294–301.CrossRefGoogle Scholar
  4. 4.
    Kwek EBK, Goh SK, Koh JSB, Png MA, Sen HT. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury. 2008;39:224–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Abrahamsen B, Eiken P, Eastell R. Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: a register-based national cohort study. J Bone Miner Res. 2009;24:1095–102.PubMedCrossRefGoogle Scholar
  6. 6.
    Black DM, Kelly MP, Genant HK, Palermo L, Eastell R, Bucci-Rechtweg C, et al. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med. 2010;362:1761–71.PubMedCrossRefGoogle Scholar
  7. 7.••
    Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29:1–23. The second report of the ASBMR Task Force provides a sharper definition of the radiographic criteria for atypical fracture, and an update of the knowledge in the field.Google Scholar
  8. 8.
    Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358:1304–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25:2267–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Schilcher J, Aspenberg P. Incidence of stress fractures of the femoral shaft in women treated with bisphosphonate. Acta Orthop. 2009;80:413–5.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.•
    Schilcher J, Koeppen V, Ranstam J, Skripitz R, Michaëlsson K, Aspenberg P. Atypical femoral fractures are a separate entity, characterized by highly specific radiographic features. A comparison of 59 cases and 218 controls. Bone. 2013;52:389–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Pegrum J, Crisp T, Padhiar N. Diagnosis and management of bone stress injuries of the lower limb in athletes. BMJ. 2012;344:e2511–1.PubMedCrossRefGoogle Scholar
  13. 13.
    Schilcher J, Aspenberg P, Sandberg O. Histology of Atypical Femoral Fractures. Conference Abstract. ASBMR meeting, Baltimore, USA. [Abstract number 1079].Google Scholar
  14. 14.
    Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res. 1979;138:175–96.Google Scholar
  15. 15.
    Chiang CY, Chiang CY, Zebaze RMD, Zebaze RMD, Ghasem-Zadeh A, Ghasem-Zadeh A, et al. Teriparatide improves bone quality and healing of atypical femoral fractures associated with bisphosphonate therapy. Bone. 2012;52:1–6.Google Scholar
  16. 16.••
    Schilcher J, Michaëlsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med. 2011;364:1728–37. This study descibes the relative and absolute risks of atypical fracture in a nation-wide cohort with radiographic adjuducation of fracture types. The association between bisphosphonate use and atypical fracture was strong. Google Scholar
  17. 17.
    Michaëlsson K, Schilcher J, Aspenberg P. Comment on Compston: pathophysiology of atypical femoral fractures and osteonecrosis of the jaw. Osteoporos Int. 2012;23:2901–2.PubMedCrossRefGoogle Scholar
  18. 18.
    Feldstein AC, Black DD, Perrin NN, Rosales AGA, Friess DD, Boardman DD, et al. Incidence and demography of femur fractures with and without atypical features. J Bone Miner Res. 2012;27:977–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Girgis CM, Sher D, Seibel MJ. Atypical femoral fractures and bisphosphonate use. N Engl J Med. 2010;362:1848–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Giusti A, Hamdy NA, Hamdy NA, Dekkers OM, Dekkers OM, Ramautar SR, et al. Atypical fractures and bisphosphonate therapy: a cohort study of patients with femoral fracture with radiographic adjudication of fracture site and features. Bone. 2011;48:966–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Ing-Lorenzini K, Desmeules J, Plachta O, Suva D, Dayer P, Peter R. Low-energy femoral fractures associated with the long-term use of bisphosphonates. Drug Saf. 2009;32:775–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Schneider JP. Should bisphosphonates be continued indefinitely? An unusual fracture in a healthy woman on long-term alendronate. Geriatrics. 2006;61:31–3.PubMedGoogle Scholar
  23. 23.
    Demiralp B, Ilgan S, Ozgur Karacalioglu A, Cicek EI, Yildrim D, Erler K. Bilateral femoral insufficiency fractures treated with inflatable intramedullary nails: a case report. Arch Orthop Trauma Surg. 2007;127:597–601.PubMedCrossRefGoogle Scholar
  24. 24.
    Somford MP, Draijer FW, Thomassen BJ, Chavassieux PM, Boivin G, Papapoulos SE. Bilateral fractures of the femur diaphysis in a patient with rheumatoid arthritis on long-term treatment with alendronate: clues to the mechanism of increased bone fragility. J Bone Miner Res. 2009;24:1736–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Ott SM. Fractures after long-term alendronate therapy. J Clin Endocrinol Metab. 2001;86:1835–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Unnanuntana A, Ashfaq K, Ton QV, Kleimeyer JP, Lane JM. The effect of long-term alendronate treatment on cortical thickness of the proximal femur. Clin Orthop Relat Res. 2011;470:291–8.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Koeppen VA, Schilcher J, Aspenberg P. Atypical fractures do not have a thicker cortex. Osteoporos Int. 2012;12:937–41.Google Scholar
  28. 28.
    Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. 2007;6:454–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, et al. Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res. 2012;27:672–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K. Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int. 2008;19:1343–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Tjhia CK, Stover SM, Rao DS, Odvina CV, Fyhrie DP. Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects. Bone. 2012;51:114–22Google Scholar
  32. 32.
    Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.PubMedCrossRefGoogle Scholar
  33. 33.
    Allen MR, Reinwald S, Burr DB. Alendronate reduces bone toughness of ribs without significantly increasing microdamage accumulation in dogs following 3 years of daily treatment. Calcif Tissue Int. 2008;82:354–60.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Güerri-Fernández RC, Nogués X, Quesada Gómez JM, Torres Del Pliego E, Puig L, García-Giralt N, et al. Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J Bone Miner Res. 2013;28:162–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Yamagami Y, Mashiba T, Iwata K, Tanaka M, Nozaki K, Yamamoto T. Effects of minodronic acid and alendronate on bone remodeling, microdamage accumulation, degree of mineralization and bone mechanical properties in ovariectomized cynomolgus monkeys. Bone. 2013;54:1–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27:437–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang Q, Teo JW, Ghasem-Zadeh A, Seeman E. Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall. Osteoporos Int. 2008;20:1151–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Sasaki S, Miyakoshi N, Hongo M, Kasukawa Y, Shimada Y. Low-energy diaphyseal femoral fractures associated with bisphosphonate use and severe curved femur: a case series. J Bone Miner Metab. 2012;30:561–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Seeman E. Bone quality: the material and structural basis of bone strength. J Bone Miner Metab. 2008;26:1–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Frost HM. Transient-steady state phenomena in microdamage physiology: a proposed algorithm for lamellar bone. Calcif Tissue Int. 1989;44:367–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Vashishth D, Behiri JC, Bonfield W. Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech. 1997;30:763–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Burr DB. Targeted and nontargeted remodeling. Bone. 2002;30:2–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Norman TL, Wang Z. Microdamage of human cortical bone: incidence and morphology in long bones. Bone. 1997;20:375–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Puhaindran ME, Puhaindran ME, Farooki A, Farooki A, Steensma MR, Steensma MR, et al. Atypical subtrochanteric femoral fractures in patients with skeletal malignant involvement treated with intravenous bisphosphonates. J Bone Joint Surg Am. 2011;93:1235–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Chang ST, Tenforde AS, Grimsrud CD, O'Ryan FS, Gonzalez JR, Baer DM, et al. Atypical femur fractures among breast cancer and multiple myeloma patients receiving intravenous bisphosphonate therapy. Bone. 2012;51:524–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Kim Y-S, Park W-C. Atypical subtrochanteric femur fracture in patient with metastatic breast cancer treated with zoledronic acid. J Breast Cancer. 2012;15:261.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Powell D, Bowler C, Roberts T, Garton M, Matthews C, Mccall I, et al. Incidence of serious side effects with intravenous bisphosphonate: a clinical audit. Q J Med. 2012;105:965–71.CrossRefGoogle Scholar
  49. 49.•
    Bone HG, Chapurlat R, Brandi M-L, Brown JP, Czerwiński E, Krieg M-A, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metabol. 2013;98:4483–92. This study evaluates the effects of up to 6 years of denosumab treatment in 4550 women. No patient with atypical femoral fracture was identified.Google Scholar
  50. 50.•
    Thompson RN, Armstrong C, Heyburn G. Bilateral atypical femoral fractures in a patient prescribed denosumab—a case report. Bone. 2014;61:44–7.Google Scholar
  51. 51.
    Aspenberg P. Denosumab and atypical femoral fractures. Acta Orthopaedica. 2013;85:1.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Clinical and Experimental Medicine, Orthopedics, Faculty of Health ScienceLinköping UniversityLinköpingSweden

Personalised recommendations