Current Osteoporosis Reports

, Volume 12, Issue 1, pp 74–81 | Cite as

Vitamin D Deficiency and its Role in Muscle-Bone Interactions in the Elderly

  • Kerrie M. SandersEmail author
  • David Scott
  • Peter R. Ebeling
Epidemiology and Pathophysiology (PR Ebeling and EF Eriksen, Section Editors)


In this commentary, we focus on common ‘downstream’ links of vitamin D between muscle and bone health. Both direct and indirect effects of 1,25 dihydroxyvitamin D (1,25(OH)D) link the mutual age-related decline in muscle function and bone density, independent of physical activity. Changes in calcium absorption associated with vitamin D deficiency affect both muscle and bone mass. The age-related decline in vitamin D receptor expression and 1,25(OH)D activity impact on proinflammatory cytokines such as tumor necrosis factor -α and interleukin-6 in skeletal muscle and vitamin D deficiency appears to enhance both bone marrow adipogenesis and intramuscular adipose tissue impacting as reduced functionality in both skeletal tissues. Controversial findings on the role of 1,25(OH)D on skeletal muscle may relate to differences in vitamin D receptor expression throughout different stages of muscle cell differentiation. Prolonged vitamin D insufficiency in the elderly is associated with reductions in both bone mineral density and type 2 muscle fibers with the outcomes of skeletal fragility in combination with reduced muscle power, leading to increased risk of falls and fracture.


Vitamin D deficiency Bone fractures Muscle Sarcopenia Osteoporosis Interaction Elderly Physical function Review 


Compliance with Ethics

Conflict of Interest

K. M. Sanders declares no conflicts of interest.

D. Scott declares no conflicts of interest.

P. R. Ebeling declares no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Frost HM. Bone "mass" and the "mechanostat": a proposal. Anatomical Record. 1987;219(1):1–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Evans WJ. Skeletal muscle effects on the skeleton. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. USA: American Society for Bone and Mineral Research; 2013. p. 978–85.CrossRefGoogle Scholar
  3. 3.
    Samu S, Juha S, Toni R, Risto H, Sirola J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas. 2013;75(2):175–80.CrossRefGoogle Scholar
  4. 4.
    •• Edwards MH, Gregson CL, Patel HP, Jameson KA, Harvey NC, Sayer AA, et al. Muscle size, strength and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J Bone Miner Res. 2013;28(11):2295–304. Relationship between muscle size and bone structure in older adults adds to our understanding. PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper C. The crippling consequences of fractures and their impact on quality of life. Am J Med. 1997;103(2):S12–9.CrossRefGoogle Scholar
  6. 6.
    •• Cawthon PM, Fox KM, Gandra SR, Delmonico MJ, Chiou CF, Anthony MS, et al. Clustering of strength, physical function, muscle, and adiposity characteristics and risk of disability in older adults. J Am Geriat Soc. 2011;59(5):781–7. Clearly written, balanced evidence on muscle and adiposity characteristics. PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Montero-Odasso M, Duque G. Vitamin D in the aging musculoskeletal system: an authentic strength preserving hormone. Molec Aspects Med. 2005;26(3):203–19.CrossRefGoogle Scholar
  8. 8.
    Anderson PH, O'Loughlin PD, May B, Morris HA. Quantification of mRNA for the vitamin D metabolizing enzymes CYP27B1 and CYP24 and vitamin D receptor in kidney using real-time reverse transcriptase-polymerase chain reaction. J Molec Endocrinol. 2003;31(1):123–32.CrossRefGoogle Scholar
  9. 9.
    Schubert L, DeLuca HF. Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys. 2010;500(2):157–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcified Tissue Int. 2013;92(2):151–62.CrossRefGoogle Scholar
  11. 11.
    DeLuca HF. Historical overview of vitamin D. In: Feldman D, editor. Vitamin D, vol. 1. 3rd ed. UK: Elsevier; 2011. p. 3–12.CrossRefGoogle Scholar
  12. 12.
    Ebeling PR, Eisman J. Vitamin D and osteoporosis. In: Feldman D, editor. Vitamin D, vol. 2. 3rd ed. UK: Elsevier; 2011. p. 1129–44.CrossRefGoogle Scholar
  13. 13.
    Dirks-Naylor AJ, Lennon-Edwards S. The effects of vitamin D on skeletal muscle function and cellular signaling. J Steroid Biochem Mol Biol. 2011;125(3):159–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20(11):1807–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Bischoff-Ferrari HA, Dawson-Hughes B, et al. Relevance of vitamin D deficiency in adult fracture and fall prevention. In: Vitamin D, vol. 2. UK: Elsevier; 2011. p. 1145–54.CrossRefGoogle Scholar
  16. 16.
    Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, et al. Fall prevention with supplemental and active forms of vitamin D: A meta-analysis of randomized controlled trials. Br Med J. 2009;339:b3692. doi: 10.1136/bmj.b3692.CrossRefGoogle Scholar
  17. 17.
    Ebeling PR, Daly RM, Kerr DA, Kimlin MG (2013) Building healthy bones throughout life: An evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust;1–9.Google Scholar
  18. 18.
    Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005;293(18):2257–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Bischoff-Ferrari HA, Willett WC, Wong JB, Stuck AE, Staehelin HB, Orav EJ, et al. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Int Med. 2009;169(6):551.CrossRefGoogle Scholar
  20. 20.
    Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet. 2007;370(9588):657–66.PubMedCrossRefGoogle Scholar
  21. 21.
    Cranney A, Weiler HA, O'Donnell S, Puil L. Summary of evidence-based review on vitamin D efficacy and safety in relation to bone health. Am J Clin Nutrit. 2008;88(2):513S–9S.PubMedGoogle Scholar
  22. 22.
    Gerstenfeld LC, Zurakowski D, Schaffer JL, Nichols DP, Toma CD, Broess M, et al. Variable hormone responsiveness of osteoblast populations isolated at different stages of embryogenesis and its relationship to the osteogenic lineage. Endocrinology. 1996;137(9):3957–68.PubMedGoogle Scholar
  23. 23.
    Cranney A, Horsley T, O'Donnell S, Weiler H, Puil L, Ooi D, et al. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess. 2007;158:1–235.Google Scholar
  24. 24.
    Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab. 2011;25(4):585–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: A population-based study of younger and older adults. Am J Med. 2004;116(9):634–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuchuk NO, Pluijm SM, van Schoor NM, Looman CW, Smit JH, Lips P. Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metabol. 2009;94(4):1244–50.CrossRefGoogle Scholar
  27. 27.
    Bouillon R, Van Schoor NM, Gielen E, Boonen S, Mathieu C, Vanderschueren D, et al. Optimal vitamin D status: A critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metabol. 2013;98(8):1195.CrossRefGoogle Scholar
  28. 28.
    Gerdhem P, Ringsberg KAM, Obrant KJ, Akesson K. Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA Study of Elderly Women. Osteoporos Int. 2005;16(11):1425–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfeifer M, Begerow B, Minne HW, Schlotthauer T, Pospeschill M, Scholz M, et al. Vitamin D status, trunk muscle strength, body sway, falls, and fractures among 237 postmenopausal women with osteoporosis. Exp Clin Endocrinol Diabetes. 2001;109(2):87–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Michelon E, Blaum C, Semba RD, Xue Q-L, Ricks MO, Fried LP. Vitamin and carotenoid status in older women: Associations with the frailty syndrome. J Gerontol (A Biol Sci Med Sci). 2006;61(6):600–7.CrossRefGoogle Scholar
  31. 31.
    Shardell M, Hicks GE, Miller RR, Kritchevsky S, Andersen D, Bandinelli S, et al. Association of low vitamin D levels with the frailty syndrome in men and women. J Gerontol (A Biol Sci Med Sci). 2009;64(1):69–75.CrossRefGoogle Scholar
  32. 32.
    Sohl E, van Schoor N, de Jongh R, Visser M, Deeg D, Lips P. Vitamin D status is associated with functional limitations and functional decline in older individuals. J Clin Endocrinol Metabol. 2013.Google Scholar
  33. 33.
    Houston DK, Tooze JA, Davis CC, Chaves PHM, Hirsch CH, Robbins JA, et al. Serum 25-hydroxyvitamin D and physical function in adults of advanced age: the CHS All Stars. J Am Geriat Soc. 2011;59(10):1793.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Visser M, Deeg DJH, Puts MTE, Seidell JC, Lips P. Low serum concentrations of 25-hydroxyvitamin D in older persons and the risk of nursing home admission. Am J Clin Nutrit. 2006;84(3):616–22.PubMedGoogle Scholar
  35. 35.
    Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged ≥60 years. Am J Clin Nutrit. 2004;80(3):752–8.PubMedGoogle Scholar
  36. 36.
    Houston DK, Cesari M, Ferrucci L, Cherubini A, Maggio D, Bartali B, et al. Association between vitamin D status and physical performance: The InCHIANTI Study. J Gerontol (A Biol Sci Med Sci). 2007;62(4):440–6.CrossRefGoogle Scholar
  37. 37.
    Tieland M, Brouwer-Brolsma E, Nienaber-Rousseau C, van Loon L, De Groot L (2013) Low vitamin D status is associated with reduced muscle mass and impaired physical performance in frail elderly people. Eur J Clin Nutrit.Google Scholar
  38. 38.
    Mowe M, Haug E, Bohmer T. Low serum calcidiol concentration in older adults with reduced muscular function. J Am Geriat Soc. 1999;47(2):220–6.PubMedGoogle Scholar
  39. 39.
    Sohl E, de Jongh R, Heijboer A, Swart KMA, Brouwer-Brolsma E, Enneman A, et al. Vitamin D status is associated with physical performance: the results of three independent cohorts. Osteoporos Int. 2012;1–10.Google Scholar
  40. 40.
    Flicker L, Mead K, MacInnis RJ, Nowson C, Scherer S, Stein MS, et al. Serum vitamin D and falls in older women in residential care in Australia. J Am Geriat Soc. 2003;51(11):1533–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Snijder MB, van Schoor NM, Pluijm SMF, van Dam RM, Visser M, Lips P. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metabol. 2006;91(8):2980–5.CrossRefGoogle Scholar
  42. 42.
    Bouillon R, Verstuyf A. Vitamin D, mitochondria, and muscle. J Clin Endocrinol Metabol. 2013;98(3):961–3.CrossRefGoogle Scholar
  43. 43.
    Prineas JW, Mason AS, Henson RA. Myopathy in metabolic bone disease. Br Med J. 1965;1(5441):1034–6.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Chalmers J, Conacher W, Gardner D, Scott P. Osteomalacia—a common disease in elderly women. J Bone Joint Surg Br. 1967;49(3):403–23.PubMedGoogle Scholar
  45. 45.
    Redzic M, Lewis RM, Thomas DT. Relationship between 25-hydoxyvitamin D, muscle strength, and incidence of injury in healthy adults: a systematic review. Nutrit Res. 2013.Google Scholar
  46. 46.
    Zamboni M, Zoico E, Tosoni P, Zivelonghi A, Bortolani A, Maggi S, et al. Relation between vitamin D, physical performance, and disability in elderly persons. J Gerontol (A Biol Sci Med Sci). 2002;57(1):7–11.CrossRefGoogle Scholar
  47. 47.
    Janssen HC, Emmelot-Vonk MH, Verhaar HJ, van der Schouw YT. Vitamin d and muscle function: is there a threshold in the relation? JAMDA. 2013;14(8):27.Google Scholar
  48. 48.
    Visser M, Deeg DJH, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metabol. 2003;88(12):5766–72.CrossRefGoogle Scholar
  49. 49.
    Scott D, Blizzard L, Fell J, Ding C, Winzenberg T, Jones G. A prospective study of the associations between 25-hydroxyvitamin D, sarcopenia progression, and physical activity in older adults. Clin Endocrinol. 2010;73(5):581–7.CrossRefGoogle Scholar
  50. 50.
    • Houston DK, Tooze JA, Neiberg RH, Hausman DB, Johnson MA, Cauley JA, et al. 25-Hydroxyvitamin D status and change in physical performance and strength in older adults the health, aging, and body composition study. Am J Epidemiol. 2012;176(11):1025–34. Change in physical performance is an important aspect often missed in observational studies on vitamin D status. PubMedCrossRefGoogle Scholar
  51. 51.
    Nowson CA, McGrath JJ, Ebeling PR, Haikerwal A, Daly RM, Sanders KM, et al. Vitamin D and health in adults in Australia and New Zealand: a position statement. Med J Aust. 2012;196(11):686–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Lips P, Binkley N, Pfeifer M, Recker R, Samanta S, Cohn DA, et al. Once-weekly dose of 8400 IU vitamin D3 compared with placebo: effects on neuromuscular function and tolerability in older adults with vitamin D insufficiency. Am J Clin Nutrit. 2010;91(4):985.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhu K, Austin N, Devine A, Bruce D, Prince RL. A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriat Soc. 2010;58(11):2063–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Lagari V, Gómez‐Marín O, Levis S. The role of vitamin D in improving physical performance in the elderly. J Bone Miner Res. 2013.Google Scholar
  55. 55.
    Szulc P, Duboeuf F, Marchand F, Delmas PD. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutrit. 2004;80(2):496–503.PubMedGoogle Scholar
  56. 56.
    Ceglia L, Chiu GR, Harris SS, Araujo AB. Serum 25-hydroxyvitamin D concentration and physical function in adult men. Clin Endocrinol. 2011;74(3):370–6.CrossRefGoogle Scholar
  57. 57.
    Yoshikawa S, Nakamura T, Tanabe H, Imamura T. Osteomalacic myopathy. Endocrinologia Japonica. 1979;26(Suppl):65–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Palmucci L, Bertolotto A, Doriguzzi C, Mongini T, Coda R. Osteomalacic myopathy in a case of diffuse nodular lipomatosis of the small bowel. Acta Neurologica Belgica. 1982;82(2):65–71.PubMedGoogle Scholar
  59. 59.
    • Ceglia L, Niramitmahapanya S, Morais MD, Rivas DA, Harris SS, Bischoff-Ferrari H, et al. A randomized study on the effect of vitamin D3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metabol. 2013;9:9. Recent evidence for the role of vitamin D supplementation in muscle hypertrophy. Google Scholar
  60. 60.
    Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20(3):187–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang Y, DeLuca HF. Is the vitamin D receptor found in muscle? Endocrinology. 2011;152(2):354–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Simpson R, Thomas G, Arnold A. Identification of 1, 25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem. 1985;260(15):8882–91.PubMedGoogle Scholar
  63. 63.
    Bischoff-Ferrari HA, Borchers M, Gudat F, Dürmüller U, Stähelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19(2):265–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocrine Rev. 2013;34(1):33–83.CrossRefGoogle Scholar
  65. 65.
    Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stähelin HB, et al. In situ detection of 1, 25-dihydroxyvitamin D receptor in human skeletal muscle tissue. Histochem J. 2001;33(1):19–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Okuno H, Kishimoto KN, Hatori M, Itoi E. 1α,25-dihydroxyvitamin D3 enhances fast-myosin heavy chain expression in differentiated C2C12 myoblasts. Cell Biol Int. 2012;36(5):441–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Ebeling P, Sandgren M, DiMagno E, Lane A, DeLuca H, Riggs B. Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1, 25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women. J Clin Endocrinol Metabol. 1992;75(1):176–82.Google Scholar
  68. 68.
    Sinha A, Hollingsworth KG, Ball S, Cheetham T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metabol. 2013;98(3):E509–13.CrossRefGoogle Scholar
  69. 69.
    Scott D, Sanders KM, Ebeling PR. Vitamin D, muscle function, and falls in older adults: does reduced deposition of intramuscular adipose tissue influence the relationship? J Clin Endocrinol Metabol. 2013.Google Scholar
  70. 70.
    Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol (A Biol Sci Med Sci). 2005;60(3):324–33.CrossRefGoogle Scholar
  71. 71.
    Marcus RL, Addison O, Dibble LE, Foreman KB, Morrell G, LaStayo P. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res. 2012.Google Scholar
  72. 72.
    •• Ryan KJ, Daniel ZC, Craggs LJ, Parr T, Brameld JM. Dose-dependent effects of vitamin D on transdifferentiation of skeletal muscle cells to adipose cells. J Endocrinol. 2013;217(1):45–58. Important in the potential role of vitamin D in reducing IMAT. PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Tagliafico AS, Ameri P, Bovio M, Puntoni M, Capaccio E, Murialdo G, et al. Relationship between fatty degeneration of thigh muscles and vitamin D status in the elderly: a preliminary MRI study. Am J Roentgenol. 2010;194(3):728–34.CrossRefGoogle Scholar
  74. 74.
    Schellinger D, Lin CS, Hatipoglu HG, Fertikh D. Potential value of vertebral proton MR spectroscopy in determining bone weakness. Am J Neuroradiol. 2001;22(8):1620–7.PubMedGoogle Scholar
  75. 75.
    Bredella MA, Lin E, Gerweck AV, Landa MG, Thomas BJ, Torriani M, et al. Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metabol. 2012;97(11):4115–22.CrossRefGoogle Scholar
  76. 76.
    Duque G, Macoritto M, Kremer R. 1,25(OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM-P/6) by decreasing the expression of peroxisome proliferator-activated receptor gamma 2 (PPARgamma2). Exp Gerontol. 2004;39(3):333–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Frost HM. Perspectives: a proposed general model of the "mechanostat" (suggestions from a new skeletal-biologic paradigm). Anatomical Record. 1996;244(2):139–47.PubMedCrossRefGoogle Scholar
  78. 78.
    Peake JM, Kukuljan S, Nowson CA, Sanders K, Daly RM. Inflammatory cytokine responses to progressive resistance training and supplementation with fortified milk in men aged 50+ years: an 18-month randomized controlled trial. Eur J Appl Physiol. 2011;111(12):3079–88.PubMedCrossRefGoogle Scholar
  79. 79.
    Binkley N. Is vitamin D the fountain of youth? Endocr Pract. 2009;15(6):590–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, et al. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC study. J Gerontol (A Biol Sci Med Sci). 2002;57(5):326–32.CrossRefGoogle Scholar
  81. 81.
    Ferrucci L, Penninx B, Volpato S, Harris TB, Bandeen-Roche K, Balfour J, et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriat Soc. 2002;50(12):1947–54.PubMedCrossRefGoogle Scholar
  82. 82.
    • Peake J, Della Gatta P, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):14. Clearly written, adding new information in this field. CrossRefGoogle Scholar
  83. 83.
    Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutrit. 2006;83(4):754–9.PubMedGoogle Scholar
  84. 84.
    Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters PJ, De Pourcq L, Bouillon R. Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metabol. 2003;88(10):4623–32.CrossRefGoogle Scholar
  85. 85.
    Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 2005;19(6):668–70.PubMedGoogle Scholar
  86. 86.
    Scott W, Stevens J, Binder-Macleod SA. Human skeletal muscle fiber type classifications. Phys Ther. 2001;81(11):1810–6.PubMedGoogle Scholar
  87. 87.
    Roubenoff R. Sarcopenic obesity: does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann N Y Acad Sci. 2000;904:553–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Schrager M, Metter EJ, Simonsick EM, Ble A, Bandinelli S, Lauretani F, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol. 2007;102:919–25.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Kim TN, Park MS, Lim KI, Choi HY, Yang SJ, Yoo HJ, et al. Relationships between sarcopenic obesity and insulin resistance, inflammation, and Vitamin D status: the Korean Sarcopenic Obesity Study (KSOS). Clin Endocrinol. 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kerrie M. Sanders
    • 1
    Email author
  • David Scott
    • 1
  • Peter R. Ebeling
    • 1
  1. 1.NorthWest Academic CentreThe University of MelbourneSt AlbansAustralia

Personalised recommendations