Current Osteoporosis Reports

, Volume 12, Issue 1, pp 48–54 | Cite as

Biomaterial Scaffolds for Treating Osteoporotic Bone

Regenerative Biology and Medicine in Osteoporosis (EM Schwartz and RE Guldberg, Section Editors)


Healing fractures resulting from osteoporosis or cancer remains a significant clinical challenge. In these populations, healing is often impaired not only due to age and disease, but also by other therapeutic interventions such as radiation, steroids, and chemotherapy. Despite substantial improvements in the treatment of osteoporosis over the last few decades, osteoporotic fractures are still a major clinical challenge in the elderly population due to impaired healing. Similar fractures with impaired healing are also prevalent in cancer patients, especially those with tumor growing in bone. Treatment options for cancer patients are further complicated by the fact that bone anabolic therapies are contraindicated in patients with tumors. Therefore, many patients undergo surgery to repair the fracture, and bone grafts are often used to stabilize orthopedic implants and provide a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials have been investigated as bone grafts for repair of osteoporotic fractures, including calcium phosphate bone cements, resorbable polymers, and allograft or autograft bone. In order to re-establish normal bone repair, bone grafts have been augmented with anabolic agents, such as mesenchymal stem cells or recombinant human bone morphogenetic protein-2. These developing approaches to bone grafting are anticipated to improve the clinical management of osteoporotic and cancer-induced fractures.


Scaffold Bone graft Osteoporosis Fracture Cancer-induced bone disease 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rey-Rico A, Silva M, Couceiro J, Concheiro A, Alvarez-Lorenzo C. Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2. Eur Cell Mater. 2011;21:317–40.PubMedGoogle Scholar
  2. 2.
    Egermann M, Schneider E, Evans CH, Baltzer AW. The potential of gene therapy for fracture healing in osteoporosis. Osteoporos Int. 2005;16 Suppl 2:S120–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28:80–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Lill CA, Hesseln J, Schlegel U, Eckhardt C, Goldhahn J, Schneider E. Biomechanical evaluation of healing in a noncritical defect in a large animal model of osteoporosis. J Orthop Res. 2003;21:836–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Barrios C, Brostrom LA, Stark A, Walheim G. Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma. 1993;7:438–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Cornell CN. Internal fracture fixation in patients with osteoporosis. J Am Acad Orthop Surg. 2003;11:109–19.PubMedGoogle Scholar
  7. 7.
    Kim WY, Han CH, Park JI, Kim JY. Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to preoperative fracture stability and osteoporosis. Int Orthop. 2001;25:360–2.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Aboulafia AJ, Levine AM, Schmidt D, Aboulafia D. Surgical therapy of bone metastases. Semin Oncol. 2007;34:206–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Utzschneider S, Wicherek E, Weber P, Schmidt G, Jansson V, Durr HR. Surgical treatment of bone metastases in patients with lung cancer. Int Orthop. 2011;35:731–6.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Wegener B, Schlemmer M, Stemmler J, Jansson V, Durr HR, Pietschmann MF. Analysis of orthopedic surgery of bone metastases in breast cancer patients. BMC Musculoskelet Disord. 2012;13:232.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.••
    Hayden RE, Mullin DP, Patel AK. Reconstruction of the segmental mandibular defect: current state of the art. Curr Opin Otolaryngol Head Neck Surg. 2012;20:231–6. This review paper summarizes the state-of-the-art in clinical management of mandibular defects resulting from cancer-induced bone disease.PubMedCrossRefGoogle Scholar
  12. 12.
    Hadji P, Klein S, Haussler B, Kless T, Linder R, Rowinski-Jablokow M, et al. The bone evaluation study (BEST): patient care and persistence to treatment of osteoporosis in Germany. Int J Clin Pharmacol Ther. 2013;51:868–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Reid IR. Overview of Pathogenesis. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Ames: John Wiley & Sons, Inc; 2013. p. 357–60.CrossRefGoogle Scholar
  14. 14.
    Edwards CM, Mundy GR. Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci. 2008;5:263–72.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.•
    Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One. 2012;7:e45142. This study relates impaired healing in osteoporotic patients to altered gene expression in MSCs.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G. Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem. 1999;75:414–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem. 2000;79:557–65.PubMedCrossRefGoogle Scholar
  18. 18.
    D'Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14:1115–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Hadji P, Gnant M, Body JJ, Bundred NJ, Brufsky A, Coleman RE, et al. Cancer treatment-induced bone loss in premenopausal women: a need for therapeutic intervention? Cancer Treat Rev. 2012;38:798–806.PubMedCrossRefGoogle Scholar
  20. 20.
    Coleman RE, Lipton A, Roodman GD, Guise TA, Boyce BF, Brufsky AM, et al. Metastasis and bone loss: advancing treatment and prevention. Cancer Treat Rev. 2010;36:615–20.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Coleman RE. Adjuvant bone-targeted therapy to prevent metastasis: lessons from the AZURE study. Curr Opin Support Palliat Care. 2012;6:322–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Ramachandra ML, David. Orthopedic Surgical Principles of Fracture Management. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Ames: John Wiley & Sons, Inc; 2013. p. 527–30.CrossRefGoogle Scholar
  23. 23.
    Tidermark J, Blomfeldt R, Ponzer S, Soderqvist A, Tornkvist H. Primary total hip arthroplasty with a Burch-Schneider antiprotrusion cage and autologous bone grafting for acetabular fractures in elderly patients. J Orthop Trauma. 2003;17:193–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Vidyadhara S, Vamsi K, Rao SK, Gnanadoss JJ, Pandian S. Use of intramedullary fibular strut graft: a novel adjunct to plating in the treatment of osteoporotic humeral shaft nonunion. Int Orthop. 2009;33:1009–14.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Cornell CN, Lane JM, Poynton AR. Orthopedic management of vertebral and long bone fractures in patients with osteoporosis. Clin Geriatr Med. 2003;19:433–55.PubMedCrossRefGoogle Scholar
  27. 27.•
    Zimmermann R, Gabl M, Lutz M, Angermann P, Gschwentner M, Pechlaner S. Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg. 2003;123:22–7. This study highlights the use of injectable calcium phosphate bone cements for stabilization of osteoporotic fractures at sites with relatively low weight-bearing requirements.PubMedGoogle Scholar
  28. 28.
    Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater. 2010;20:1–12.PubMedGoogle Scholar
  29. 29.•
    Moroni A, Larsson S, Hoang Kim A, Gelsomini L, Giannoudis PV. Can we improve fixation and outcomes? Use of bone substitutes. J Orthop Trauma. 2009;23:422–5. This paper reviews the utility of synthetic bone grafts for improving fixation of osteoporotic fractures.PubMedCrossRefGoogle Scholar
  30. 30.
    Goodman SB, Bauer TW, Carter D, Casteleyn PP, Goldstein SA, Kyle RF, et al. Norian SRS cement augmentation in hip fracture treatment. Laboratory and initial clinical results. Clin Orthop Relat Res. 1998;348:42–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Namdari S, Voleti PB, Mehta S. Evaluation of the osteoporotic proximal humeral fracture and strategies for structural augmentation during surgical treatment. J Shoulder Elbow Surg. 2012;21:1787–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Robinson CM, Page RS. Severely impacted valgus proximal humeral fractures. Results of operative treatment. J Bone Joint Surg Am. 2003;85-A:1647–55.PubMedGoogle Scholar
  33. 33.
    Jupiter JB, Winters S, Sigman S, Lowe C, Pappas C, Ladd AL, et al. Repair of five distal radius fractures with an investigational cancellous bone cement: a preliminary report. J Orthop Trauma. 1997;11:110–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Ladd AL, Pliam NB. Use of bone-graft substitutes in distal radius fractures. J Am Acad Orthop Surg. 1999;7:279–90.PubMedGoogle Scholar
  35. 35.••
    Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3:961–9. This study points to the use of calcium phosphate cements with enhanced bioactivity for both stabilization and restoration of normal bone healing in osteoporotic fractures.PubMedCrossRefGoogle Scholar
  36. 36.••
    Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, Hill RG, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31:3949–56. This study points to the potential of bioactive bone cements for restoring normal osteoblast and osteoclast function.PubMedCrossRefGoogle Scholar
  37. 37.
    Cameron K, Travers P, Chander C, Buckland T, Campion C, Noble B. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. J Biomed Mater Res A. 2013;101:13–22.PubMedCrossRefGoogle Scholar
  38. 38.•
    Cheng N, Dai J, Cheng X, Li S, Miron RJ, Wu T, et al. Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model. J Mater Sci Mater Med. 2013;24:1963–75. This study points to composite scaffolds as a strategy for improving healing of osteoporotic fractures.PubMedCrossRefGoogle Scholar
  39. 39.
    Simman R, Hoffmann A, Bohinc RJ, Peterson WC, Russ AJ. Role of platelet-rich plasma in acceleration of bone fracture healing. Ann Plast Surg. 2008;61:337–44.PubMedCrossRefGoogle Scholar
  40. 40.•
    Liu HY, Wu AT, Tsai CY, Chou KR, Zeng R, Wang MF, et al. The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials. 2011;32:6773–80. This study highlights the potential of PRP for healing osteoporotic fractures.PubMedCrossRefGoogle Scholar
  41. 41.
    Boerckel JD, Kolambkar YM, Dupont KM, Uhrig BA, Phelps EA, Stevens HY, et al. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials. 2011;32:5241–51.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Brown KV, Li B, Guda T, Perrien DS, Guelcher SA, Wenke JC. Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng A. 2011;17:1735–46.CrossRefGoogle Scholar
  43. 43.
    Phillips FM, Turner AS, Seim III HB, MacLeay J, Toth CA, Pierce AR, et al. In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model. Spine J. 2006;6:500–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Li M, Liu X, Liu X, Ge B. Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin Orthop Relat Res. 2010;468:1978–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Yu Z, Zhu T, Li C, Shi X, Liu X, Yang X, et al. Improvement of intertrochanteric bone quality in osteoporotic female rats after injection of polylactic acid-polyglycolic acid copolymer/collagen type I microspheres combined with bone mesenchymal stem cells. Int Orthop. 2012;36:2163–71.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.••
    Liu Y, Ming L, Luo H, Liu W, Zhang Y, Liu H, et al. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials. 2013;34:9998–10006. This study underscores the potential of dual delivery of MSCs and osteoinductive factors for restoration of normal bone healing and enhanced bone regeneration.PubMedCrossRefGoogle Scholar
  47. 47.
    Tang Y, Tang W, Lin Y, Long J, Wang H, Liu L, et al. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int. 2008;32:1150–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Yue B, Lu B, Dai KR, Zhang XL, Yu CF, Lou JR, et al. BMP2 gene therapy on the repair of bone defects of aged rats. Calcif Tissue Int. 2005;77:395–403.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Y, Cheng N, Miron R, Shi B, Cheng X. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials. 2012;33:6698–708.PubMedCrossRefGoogle Scholar
  50. 50.
    Kleeff J, Maruyama H, Ishiwata T, Sawhney H, Friess H, Buchler MW, et al. Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology. 1999;116:1202–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshikawa H, Rettig WJ, Takaoka K, Alderman E, Rup B, Rosen V, et al. Expression of bone morphogenetic proteins in human osteosarcoma. Immunohistochemical detection with monoclonal antibody. Cancer. 1994;73:85–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Laitinen M, Jortikka L, Halttunen T. Measurement of total and local bone morphogenic protein concentration in bone tumors. Int Orthop. 1997;21:188.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Cleary J, Ddungu H, Distelhorst SR, Ripamonti C, Rodin GM, Bushnaq MA, et al. Supportive and palliative care for metastatic breast cancer: resource allocations in low- and middle-income countries. A Breast Health Global Initiative 2013 consensus statement. Breast. 2013;22:616–27.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaner T, Oktenoglu T, Sasani M, Ozer AF. L5 vertebrectomy for the surgical treatment of tumoral and traumatic lesions of L5 vertebra. Orthop Rev. 2012;4:e10.Google Scholar
  55. 55.
    Biau DJ, Thevenin F, Dumaine V, Babinet A, Tomeno B, Anract P. Ipsilateral femoral autograft reconstruction after resection of a pelvic tumor. J Bone Joint Surg Am. 2009;91:142–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Riedel B, Franklin C, Seal A, Stevanovic M. Free vascularized fibula graft to treat chondroblastoma of the hip. Orthopedics. 2012;35:e259–61.PubMedGoogle Scholar
  57. 57.
    Legname M, Barbary S, Dautel G. Distal radius reconstruction using a split vascularized fibula. Two cases following giant cell tumor resection. Orthop Traumatol Surg Res. 2011;97:762–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Rao LP, Shukla M, Sharma V, Pandey M. Mandibular conservation in oral cancer. Surg Oncol. 2012;21:109–18.PubMedCrossRefGoogle Scholar
  59. 59.
    Kalavrezos ND, Gratz KW, Sailer HF, Stahel WA. Correlation of imaging and clinical features in the assessment of mandibular invasion of oral carcinomas. Int J Oral Maxillofac Surg. 1996;25:439–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Anne-Gaelle B, Samuel S, Julie B, Renaud L, Pierre B. Dental implant placement after mandibular reconstruction by microvascular free fibula flap: current knowledge and remaining questions. Oral Oncol. 2011;47:1099–104.PubMedCrossRefGoogle Scholar
  61. 61.
    Smolka K, Kraehenbuehl M, Eggensperger N, Hallermann W, Thoren H, Iizuka T, et al. Fibula free flap reconstruction of the mandible in cancer patients: evaluation of a combined surgical and prosthodontic treatment concept. Oral Oncol. 2008;44:571–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Urken ML, Buchbinder D, Costantino PD, Sinha U, Okay D, Lawson W, et al. Oromandibular reconstruction using microvascular composite flaps: report of 210 cases. Arch Otolaryngol Head Neck Surg. 1998;124:46–55.PubMedCrossRefGoogle Scholar
  63. 63.
    Jacobson AS, Zevallos J, Smith M, Lazarus CL, Husaini H, Okay D, et al. Quality of life after management of advanced osteoradionecrosis of the mandible. Int J Oral Maxillofac Surg. 2013;42:1121–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Alam DS, Nuara M, Christian J. Analysis of outcomes of vascularized flap reconstruction in patients with advanced mandibular osteoradionecrosis. Otolaryngol Head Neck Surg. 2009;141:196–201.PubMedCrossRefGoogle Scholar
  65. 65.
    Munoz Guerra MF, Naval Gias L, Campo FR, Perez JS. Marginal and segmental mandibulectomy in patients with oral cancer: a statistical analysis of 106 cases. J Oral Maxillofac Surg. 2003;61:1289–96.PubMedCrossRefGoogle Scholar
  66. 66.
    Tei K, Totsuka Y, Iizuka T, Ohmori K. Marginal resection for carcinoma of the mandibular alveolus and gingiva where radiologically detected bone defects do not extend beyond the mandibular canal. J Oral Maxillofac Surg. 2004;62:834–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Simon EN, Merkx MA, Kalyanyama BM, Shubi FM, Stoelinga PJ. Immediate reconstruction of the mandible after resection for aggressive odontogenic tumours: a cohort study. Int J Oral Maxillofac Surg. 2012;42(1):106–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Gadre PK, Ramanojam S, Patankar A, Gadre KS. Nonvascularized bone grafting for mandibular reconstruction: myth or reality? J Craniofac Surg. 2011;22:1727–35.PubMedCrossRefGoogle Scholar
  69. 69.••
    Matsuo A, Chiba H, Takahashi H, Toyoda J, Hasegawa O, Hojo S. Bone quality of mandibles reconstructed with particulate cellular bone and marrow, and platelet-rich plasma. J Craniomaxillofac Surg. 2011;39:628–32. This study shows that local delivery of MSCs and osteoinductive factors is an effective strategy for regeneration of mandibular bone defects.PubMedCrossRefGoogle Scholar
  70. 70.
    Kokorina NA, Lewis Jr JS, Zakharkin SO, Krebsbach PH, Nussenbaum B. rhBMP-2 has adverse effects on human oral carcinoma cell lines in vivo. Laryngoscope. 2012;122:95–102.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Kokorina NA, Zakharkin SO, Krebsbach PH, Nussenbaum B. Treatment effects of rhBMP-2 on invasiveness of oral carcinoma cell lines. Laryngoscope. 2011;121:1876–80.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Albanese A, Licata ME, Polizzi B, Campisi G. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing. 2013;10:23.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9)NashvilleUSA
  2. 2.Departments of Medicine (Clinical Pharmacology) and Cancer BiologyVanderbilt UniversityNashvilleUSA
  3. 3.Center for Bone BiologyVanderbilt UniversityNashvilleUSA
  4. 4.Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations