Advertisement

Current Osteoporosis Reports

, Volume 10, Issue 2, pp 101–108 | Cite as

Pathways for Bone Loss in Inflammatory Disease

  • Tobias Braun
  • Georg SchettEmail author
Skeletal Biology (D Burr, Section Editor)

Abstract

Chronic inflammation including autoimmune disease is an important risk factor for the development of osteoporosis. Receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) play a central role in osteoclast differentiation and function, and the molecular pathways by which M-CSF and RANKL induce osteoclast differentiation have been analyzed in detail. Proinflammatory cytokines directly or indirectly regulate osteoclastogenesis and bone resorption providing a link between inflammation and osteoporosis. Tumor necrosis factor-α, interleukin (IL)-1, IL-6, and IL-17 are the most important proinflammatory cytokines triggering inflammatory bone loss. Inhibition of these cytokines has provided potent therapeutic effects in the treatment of diseases such as rheumatoid arthritis. Further investigation is needed to understand the pathophysiology and to develop new strategies to treat inflammatory bone loss. This review summarizes new data on inflammatory bone loss obtained in 2011.

Keywords

Bone loss Inflammatory disease Osteoporosis 

Notes

Disclosure

No potential conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Braun T, Zwerina J. Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Res Ther. 2011;13(4):235.PubMedCrossRefGoogle Scholar
  2. 2.
    • Nakashima T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. Osteocytes are a major source of RANKL and thus regulate bone homeostasis in vitro and in vivo..PubMedCrossRefGoogle Scholar
  3. 3.
    Yeo L, et al. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis. 2011;70(11):2022–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Ellabban AS, et al. Receptor activator of nuclear factor kappa B ligand serum and synovial fluid level. A comparative study between rheumatoid arthritis and osteoarthritis. Rheumatol Int 2011, Feb 17.Google Scholar
  5. 5.
    Boumans MJ, et al. Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis. 2012;71(1):108–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Mabilleau G, et al. Depth and volume of resorption induced by osteoclasts generated in the presence of RANKL, TNF-alpha/IL-1 or LIGHT. Cytokine. 2012;57(2):294–9.PubMedCrossRefGoogle Scholar
  7. 7.
    • Jang E, et al. Deficiency of foxp3 regulatory T cells exacerbates autoimmune arthritis by altering the synovial proportions of CD4 T cells and dendritic cells. Immune Netw. 2011;11(5):299–306. Regulatory T cells protect from inflammatory bone loss in vivo reducing the influx of RANKL-positive cells into synovia..PubMedCrossRefGoogle Scholar
  8. 8.
    Claro T, et al. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One. 2011;6(4):e18748.PubMedCrossRefGoogle Scholar
  9. 9.
    • Lee SJ, et al. Bone destruction by receptor activator of nuclear factor kappaB ligand-expressing T cells in chronic gouty arthritis. Arthritis Res Ther. 2011;13(5):R164. This publication shows that RANKL contributes to the pathogenesis of human gouty arthritis..PubMedCrossRefGoogle Scholar
  10. 10.
    Choe JY, Lee GH, Kim SK. Radiographic bone damage in chronic gout is negatively associated with the inflammatory cytokines soluble interleukin 6 receptor and osteoprotegerin. J Rheumatol. 2011;38(3):485–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Hwang SY, Putney JW. Orai1-mediated calcium entry plays a critical role in osteoclast differentiation and function by regulating activation of the transcription factor NFATc1. FASEB J. 2011.Google Scholar
  12. 12.
    Noh AL, et al. L-type Ca(2+) channel agonist inhibits RANKL-induced osteoclast formation via NFATc1 down-regulation. Life Sci. 2011;89(5–6):159–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamaguchi M, Weitzmann MN, Murata T. Exogenous regucalcin stimulates osteoclastogenesis and suppresses osteoblastogenesis through NF-kappaB activation. Mol Cell Biochem. 2012;359(1–2):193–203.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee YR, et al. SPA0355, a thiourea analogue, inhibits inflammatory responses and joint destruction in fibroblast-like synoviocytes and mice with collagen-induced arthritis. Br J Pharmacol. 2011;164(2b):794–806.PubMedGoogle Scholar
  15. 15.
    Soysa NS, et al. Defective nuclear factor-kappaB-inducing kinase in aly/aly mice prevents bone resorption induced by local injection of lipopolysaccharide. J Periodontal Res. 2011;46(2):280–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu S, et al. The large zinc finger protein ZAS3 is a critical modulator of osteoclastogenesis. PLoS One. 2011;6(3):e17161.PubMedCrossRefGoogle Scholar
  17. 17.
    Mabilleau G, Chappard D, Sabokbar A. Role of the A20-TRAF6 axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem. 2011;286(5):3242–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Bishop KA, et al. Mouse Rankl expression is regulated in T cells by c-Fos through a cluster of distal regulatory enhancers designated the T cell control region. J Biol Chem. 2011;286(23):20880–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Danks L, et al. Elevated cytokine production restores bone resorption by human Btk-deficient osteoclasts. J Bone Miner Res. 2011;26(1):182–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang BY, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther. 2011;13(4):R115.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoon SH, et al. Adenylate cyclase and calmodulin-dependent kinase have opposite effects on osteoclastogenesis by regulating the PKA-NFATc1 pathway. J Bone Miner Res. 2011;26(6):1217–29.PubMedCrossRefGoogle Scholar
  22. 22.
    Bao X, et al. Acid sphingomyelinase regulates osteoclastogenesis by modulating sphingosine kinases downstream of RANKL signaling. Biochem Biophys Res Commun. 2011;405(4):533–7.PubMedCrossRefGoogle Scholar
  23. 23.
    He Y, et al. Erk1 positively regulates osteoclast differentiation and bone resorptive activity. PLoS One. 2011;6(9):e24780.PubMedCrossRefGoogle Scholar
  24. 24.
    Kukita A, et al. The transcription factor FBI-1/OCZF/LRF is expressed in osteoclasts and regulates RANKL-induced osteoclast formation in vitro and in vivo. Arthritis Rheum. 2011;63(9):2744–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Mahoney DJ, et al. TSG-6 inhibits osteoclast activity via an autocrine mechanism and is functionally synergistic with osteoprotegerin. Arthritis Rheum. 2011;63(4):1034–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Yasui T, et al. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J Bone Miner Res. 2011;26(11):2665–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Cantley MD, et al. Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro. J Cell Physiol. 2011;226(12):3233–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Kim JH, et al. RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation. Biochem J. 2011;436(2):253–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Hodge JM, et al. M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS One. 2011;6(6):e21462.PubMedCrossRefGoogle Scholar
  30. 30.
    Kimura K, et al. Anti-c-Fms antibody inhibits lipopolysaccharide-induced osteoclastogenesis in vivo. FEMS Immunol Med Microbiol. 2012;64(2):219–27.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen Z, et al. The critical role of IL-34 in osteoclastogenesis. PLoS One. 2011;6(4):e18689.PubMedCrossRefGoogle Scholar
  32. 32.
    Chemel M, et al. Interleukin 34 expression is associated with synovitis severity in rheumatoid arthritis patients. Ann Rheum Dis. 2012;71(1):150–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee B, et al. Direct inhibition of human RANK+ osteoclast precursors identifies a homeostatic function of IL-1beta. J Immunol. 2010;185(10):5926–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Ignatius A, et al. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1beta. J Cell Biochem. 2011;112(9):2594–605.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee GT, et al. Bone morphogenetic protein 6-induced interleukin-1beta expression in macrophages requires PU.1/Smad1 interaction. Mol Immunol. 2011;48(12–13):1540–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Schulze J, et al. Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells. J Bone Miner Res. 2011;26(4):704–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Saleh H, et al. Interleukin-33, a target of parathyroid hormone and oncostatin m, increases osteoblastic matrix mineral deposition and inhibits osteoclast formation in vitro. Endocrinology. 2011;152(5):1911–22.PubMedCrossRefGoogle Scholar
  38. 38.
    • Keller J, et al. Transgenic over-expression of interleukin-33 in osteoblasts results in decreased osteoclastogenesis. Biochem Biophys Res Commun. 2012;417(1):217–22. Inhibition of osteoclastogenesis is an important function of IL-33 in vivo in mice..PubMedCrossRefGoogle Scholar
  39. 39.
    • Zaiss MM, et al. IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF-alpha-mediated bone loss. J Immunol. 2011;186(11):6097–105. IL-33 reduces TNF-α–mediated inflammatory bone loss and osteoclast number in vivo in mice..PubMedCrossRefGoogle Scholar
  40. 40.
    Funakoshi-Tago M, et al. JAK2 is an important signal transducer in IL-33-induced NF-kappaB activation. Cell Signal. 2011;23(2):363–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Ali S, et al. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. J Immunol. 2011;187(4):1609–16.PubMedCrossRefGoogle Scholar
  42. 42.
    Saidi S, et al. IL-33 is expressed in human osteoblasts, but has no direct effect on bone remodeling. Cytokine. 2011;53(3):347–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Kageyama Y, et al. Involvement of IL-33 in the pathogenesis of rheumatoid arthritis: the effect of etanercept on the serum levels of IL-33. Mod Rheumatol. 2012;22(1):89–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Hong YS, et al. Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis. J Korean Med Sci. 2011;26(9):1132–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Talabot-Ayer D, et al. Distinct serum and synovial fluid interleukin (IL)-33 levels in rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Joint Bone Spine. 2012;79(1):32–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Nagano K, et al. The tumor necrosis factor type 2 receptor plays a protective role in tumor necrosis factor-alpha-induced bone resorption lacunae on mouse calvariae. J Bone Miner Metab. 2011;29(6):671–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Atanga E, et al. TNFalpha inhibits the development of osteoclasts through osteoblast-derived GM-CSF. Bone. 2011;49(5):1090–100.PubMedCrossRefGoogle Scholar
  48. 48.
    Goto H, et al. Primary human bone marrow adipocytes support TNF-alpha-induced osteoclast differentiation and function through RANKL expression. Cytokine. 2011;56(3):662–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Yarilina A, et al. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proc Natl Acad Sci USA. 2011;108(4):1573–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Finzel S, et al. Repair of bone erosions in rheumatoid arthritis treated with tumour necrosis factor inhibitors is based on bone apposition at the base of the erosion. Ann Rheum Dis. 2011;70(9):1587–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Huang H, et al. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 2011;44(5):420–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Tsukasaki M, et al. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-alpha. Biochem Biophys Res Commun. 2011;410(4):766–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Suzuki M, et al. Intercellular adhesion molecule-1 on synovial cells attenuated interleukin-6-induced inhibition of osteoclastogenesis induced by receptor activator for nuclear factor kappaB ligand. Clin Exp Immunol. 2011;163(1):88–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Cheung WY, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 2012;50(1):104–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Honda K. Interleukin-6 and soluble interleukin-6 receptor suppress osteoclastic differentiation by inducing PGE(2) production in chondrocytes. J Oral Sci. 2011;53(1):87–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Terpos E, et al. Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin Exp Rheumatol. 2011;29(6):921–5.PubMedGoogle Scholar
  57. 57.
    Kanbe K, et al. Osteoprotegerin expression in bone marrow by treatment with tocilizumab in rheumatoid arthritis. Rheumatol Int. 2011;Jul 26.Google Scholar
  58. 58.
    Natsume H, et al. Wnt3a regulates tumor necrosis factor-alpha-stimulated interleukin-6 release in osteoblasts. Mol Cell Endocrinol. 2011;331(1):66–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Kato K, et al. AMP-activated protein kinase regulates PDGF-BB-stimulated interleukin-6 synthesis in osteoblasts: Involvement of mitogen-activated protein kinases. Life Sci. 2012;90(1–2):71–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Guo L, et al. Angiotensin II induces interleukin-6 synthesis in osteoblasts through ERK1/2 pathway via AT1 receptor. Arch Oral Biol. 2011;56(3):205–11.PubMedCrossRefGoogle Scholar
  61. 61.
    Rego D, et al. IL-6 production is positively regulated by two distinct Src homology domain 2-containing tyrosine phosphatase-1 (SHP-1)-dependent CCAAT/enhancer-binding protein beta and NF-kappaB pathways and an SHP-1-independent NF-kappaB pathway in lipopolysaccharide-stimulated bone marrow-derived macrophages. J Immunol. 2011;186(9):5443–56.PubMedCrossRefGoogle Scholar
  62. 62.
    Kamiya S, et al. IL-27 suppresses RANKL expression in CD4+ T cells in part through STAT3. Immunol Lett. 2011;138(1):47–53.PubMedCrossRefGoogle Scholar
  63. 63.
    Halvorsen EH, et al. Interleukin-15 induces interleukin-17 production by synovial T cell lines from patients with rheumatoid arthritis. Scand J Immunol. 2011;73(3):243–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Hueber AJ, et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J Immunol. 2010;184(7):3336–40.PubMedCrossRefGoogle Scholar
  65. 65.
    • Pollinger B, et al. Th17 cells, not IL-17+ gammadelta T cells, drive arthritic bone destruction in mice and humans. J Immunol. 2011;186(4):2602–12. This study shows in vivo that IL-17 produced by Th17 cells promotes inflammatory bone loss while IL-17 secreted by γδ T cells is less important..PubMedCrossRefGoogle Scholar
  66. 66.
    Abdollahi-Roodsaz S, et al. Destructive role of myeloid differentiation factor 88 and protective role of TIR-containing adaptor inducing interferon beta in IL-17-dependent arthritis. Arthritis Rheum. 2011, Dec 6.Google Scholar
  67. 67.
    Oostlander AE, et al. T cell-mediated increased osteoclast formation from peripheral blood as a mechanism for Crohn’s disease-associated bone loss. J Cell Biochem. 2012;113(1):260–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Park YE, et al. IL-17 increases cadherin-11 expression in a model of autoimmune experimental arthritis and in rheumatoid arthritis. Immunol Lett. 2011;140(1–2):97–103.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang F, et al. Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie. 2011;93(2):296–305.PubMedCrossRefGoogle Scholar
  70. 70.
    Zwerina K, et al. Anti IL-17A therapy inhibits bone loss in TNF-alpha-mediated murine arthritis by modulation of the T-cell balance. Eur J Immunol. 2012;42(2):413–23.PubMedCrossRefGoogle Scholar
  71. 71.
    Sadik CD, et al. IL-17RA signaling amplifies antibody-induced arthritis. PLoS One. 2011;6(10):e26342.PubMedCrossRefGoogle Scholar
  72. 72.
    Pickens SR, et al. Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization. Angiogenesis. 2011;14(4):443–55.PubMedCrossRefGoogle Scholar
  73. 73.
    Rampersad RR, et al. Enhanced Th17-cell responses render CCR2-deficient mice more susceptible for autoimmune arthritis. PLoS One. 2011;6(10):e25833.PubMedCrossRefGoogle Scholar
  74. 74.
    Kaiwen W, et al. Changes and significance of IL-25 in chicken collagen II-induced experimental arthritis (CIA). Rheumatol Int. 2011;May 29.Google Scholar
  75. 75.
    Yu M, et al. NF-kappaB signaling participates in both RANKL- and IL-4-induced macrophage fusion: receptor cross-talk leads to alterations in NF-kappaB pathways. J Immunol. 2011;187(4):1797–806.PubMedCrossRefGoogle Scholar
  76. 76.
    Cheng J, et al. Interleukin-4 inhibits RANKL-induced NFATc1 expression via STAT6: a novel mechanism mediating its blockade of osteoclastogenesis. J Cell Biochem. 2011;112(11):3385–92.PubMedCrossRefGoogle Scholar
  77. 77.
    Ma HM, Wu Z, Nakanishi H. Phosphatidylserine-containing liposomes suppress inflammatory bone loss by ameliorating the cytokine imbalance provoked by infiltrated macrophages. Lab Invest. 2011;91(6):921–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Kohara H, et al. IFN-gamma directly inhibits TNF-alpha-induced osteoclastogenesis in vitro and in vivo and induces apoptosis mediated by Fas/Fas ligand interactions. Immunol Lett. 2011;137(1–2):53–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Ayon Haro ER, et al. Locally administered interferon-gamma accelerates lipopolysaccharide-induced osteoclastogenesis independent of immunohistological RANKL upregulation. J Periodontal Res. 2011;46(3):361–73.PubMedCrossRefGoogle Scholar
  80. 80.
    Cheng J, et al. Molecular mechanisms of the biphasic effects of interferon-gamma on osteoclastogenesis. J Interferon Cytokine Res. 2012;32(1):34–45.PubMedCrossRefGoogle Scholar
  81. 81.
    Yasui T, et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res. 2011;26(7):1447–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Park MK, et al. IL-15 promotes osteoclastogenesis via the PLD pathway in rheumatoid arthritis. Immunol Lett. 2011;139(1–2):42–51.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim YG, et al. The influence of interleukin-32gamma on osteoclastogenesis with a focus on fusion-related genes. J Clin Immunol. 2012;32(1):201–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Pickens SR, et al. Local expression of interleukin-27 ameliorates collagen-induced arthritis. Arthritis Rheum. 2011;63(8):2289–98.PubMedCrossRefGoogle Scholar
  85. 85.
    Hsu YH, Hsieh PP, Chang MS. Interleukin-19 blockade attenuates collagen-induced arthritis in rats. Rheumatology (Oxford). 2012;51(3):434–42.CrossRefGoogle Scholar
  86. 86.
    Hsu YH, Chang MS. Interleukin-20 antibody is a potential therapeutic agent for experimental arthritis. Arthritis Rheum. 2010;62(11):3311–21.PubMedCrossRefGoogle Scholar
  87. 87.
    Hsu YH, et al. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J Exp Med. 2011;208(9):1849–61.PubMedCrossRefGoogle Scholar
  88. 88.
    Kwok SK, et al. Interleukin-21 promotes osteoclastogenesis in rheumatoid arthritis in humans and mice. Arthritis Rheum. 2012;64(3):p740–51.CrossRefGoogle Scholar
  89. 89.
    Marijnissen RJ, et al. Increased expression of interleukin-22 by synovial Th17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation. Arthritis Rheum. 2011;63(10):2939–48.PubMedCrossRefGoogle Scholar
  90. 90.
    Kim KW, et al. IL-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum. 2011;Oct 27.Google Scholar
  91. 91.
    Guma M, et al. JNK1 controls mast cell degranulation and IL-1{beta} production in inflammatory arthritis. Proc Natl Acad Sci USA. 2010;107(51):22122–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Polzer K, et al. Proteasome inhibition aggravates tumor necrosis factor-mediated bone resorption in a mouse model of inflammatory arthritis. Arthritis Rheum. 2011;63(3):670–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Zwerina K, et al. Vitamin D receptor regulates TNF-mediated arthritis. Ann Rheum Dis. 2011;70(6):1122–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Bluml S, et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 2011;63(5):1281–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117(13):3648–57.PubMedCrossRefGoogle Scholar
  96. 96.
    Nakasa T, et al. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 2011;63(6):1582–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations