Advertisement

Rickets

  • M. Zulf MughalEmail author
Pediatrics and Skeletal Development (Craig Langman and Maria Luisa Bianchi, Section Editors)

Abstract

Rickets is disorder of a growing child arising from disorders that result in impaired apoptosis of hypertrophic cells and mineralization of the growth plate. Rickets due to nutritional causes remains an important global problem. The factors responsible for resurgence of rickets among dark-skinned infants living in developed countries include the following: residence in northern or southern latitudes, voluntary avoidance of exposure to solar ultraviolet B radiation, maternal vitamin D deficiency during pregnancy, and prolonged breastfeeding without provision of vitamin D supplements. Fibroblast growth factor 23 (FGF23), secreted by osteocytes, is an important regulator of serum phosphate and 1,25(OH)2D3 levels. Hypophosphatemic rickets resulting from increased synthesis or under-catabolism of FGF23 is reviewed.

Keywords

Calcium FGF23 DMP1 Hypophosphatemic ENPP1 PHEX Phosphate Rickets Vitamin D Vitamin D–dependent rickets XLH 25(OH)D 1,25(OH)2

Notes

Disclosure

No potential conflict of interest relevant to this article was reported.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA. 2005;102:9637–42.PubMedCrossRefGoogle Scholar
  3. 3.
    •• Tiosano D & Hochberg Z Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab. 2009;27(4):392–401. This paper proposes a new classification for the differential diagnosis of rickets, which is based on the mechanisms leading to hypophosphatemia-high PTH activity, high FGF23 activity, or renal phosphaturia.Google Scholar
  4. 4.
    Casella SJ, Reiner BJ, Chen TC, Holick MF. A possible defect in 25-hydroxylation as a cause of rickets. J Pediatr. 1994;124:929–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA. 2004;101:7711–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Thacher TD, Fischer PR, Strand MA, Pettifor JM. Nutritional rickets around the world: causes and future directions. Ann Trop Paediatr. 2006;26:1–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Allgrove J. Is nutritional rickets returning? Archives of Disease in Childhood. 2004;89(8):699–701.PubMedCrossRefGoogle Scholar
  8. 8.
    Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. European Journal of Endocrinology. 2009;160(3):491–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Ward LM, Gaboury I, Ladhani M, Zlotkin S. Vitamin D-deficiency rickets among children in Canada. Canadian Medical Association Journal. 2007;177(2):161–6.PubMedCrossRefGoogle Scholar
  10. 10.
    McGillivray G, Skull SA, Davie G, et al. High prevalence of asymptomatic vitamin D and iron deficiency in East African immigrant children and adolescents living in a temperate climate. Archives of Disease in Childhood. 2007;92(12):1088–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Agarwal KS, Mughal MZ, Upadhyay P, Berry J, Mawer EB, J.M. P. The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. Arch Dis Chld. 2002; 87: 111–113.Google Scholar
  12. 12.
    Das G, Crocombe S, McGrath M, Berry JL, Mughal MZ. Hypovitaminosis D among healthy adolescent girls attending an inner city school. Archives of Disease in Childhood. 2006;91(7):569–72.PubMedCrossRefGoogle Scholar
  13. 13.
    van der Meer IM, Karamali NS, Boeke AJ. High prevalence of vitamin D deficiency in pregnant non-Western women in the Hague, Netherlands. Am J Clin Nutr. 2006;84(2):350–3.Google Scholar
  14. 14.
    Dijkstra SH, van Beek A, Janssen JW, de Vleeschouwer LH, Huysman WA, van den Akker EL. High prevalence of vitamin D deficiency in newborns of high-risk mothers. Arch Dis Chld Fetal Neonatal Ed. 2007Google Scholar
  15. 15.
    Clemens TL, Adams JS, Henderson SL. Holick MF Increased skin pigmentation reduces the capacity of skin to synthesize vitamin D3. Lancet. 1982;1:74–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Crowe FL, Steur M, Allen NE, Appleby PN, Travis RC, Key TJ. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: results from the EPIC-Oxford study. Public Health Nutr. 2011;14(2):340–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Clements M R, Johnson L, Fraser D R. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature 1987. 32562–65.65.Google Scholar
  18. 18.
    A Khadilkar, G Das, M Sayyad, N Sanwalka, D Bhandari, V Khadilkar, M Z Mughal. Letter. Low Calcium intake & Hypovitaminosis D in Adolescent Girls. Archives of Disease in Childhood. 2007;92 (11):1045.Google Scholar
  19. 19.
    Mughal MZ, Salama H, Greenaway T, Laing I, Mawer EB. Florid rickets associated with prolonged breast feeding without vitamin D supplementation. BMJ. 1999;318:39–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Awumey EMK, Mitra DA, Hollis BW, Kumar R, Bell NH. Vitamin D metabolism is altered in Asian Indians in the South United States: a Clinical Research Center Study. J Clin Endocrinol Metab. 1998;83:169–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180–8.PubMedCrossRefGoogle Scholar
  22. 22.
    DeLucia MC, Mitnick ME, Carpenter TO. Nutritional rickets with normal circulating 25-hydroxyvitamin D: a call for reexamining the role of dietary calcium intake in North American infants. J Clin Endocrinol Metab. 2003;88(8):3539–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Gordon CM, Williams AL, Feldman HA, May J, Sinclair L, Vasquez A, et al. Treatment of hypovitaminosis D in infants and toddlers. J Clin Endocrinol Metab. 2008;93:2716–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Shah BR, Finberg L. Single-dose therapy for nutritional vitamin D-deficiency rickets: a preferred method. J Pediatr. 1994;125:487–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Dunnigan M G, Glekin B M, Henderson J B. et al Prevention of rickets in Asian children: assessment of the Glasgow campaign. BMJ 1985. 291(6490)239–242.242.Google Scholar
  26. 26.
    Hatun S, Ozkan B, Bereket A. Vitamin D deficiency and prevention: Turkish experience. Acta Paediatr. 2011;100(9):1195–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Malloy PJ, Feldman D. Genetic disorders and defects in vitamin D action. Endocrinol Metab Clin North Am. 2010;39(2):333–46.PubMedCrossRefGoogle Scholar
  28. 28.
    •• Bergwitz C & Juppner H. 2010 Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annual Review of Medicine 61 91–104. Most insights gained into the regulation of phosphate homeostasis by these factors (PTH, vitamin D, and FGF23) are derived from human genetic disorders and genetically engineered mice, which are reviewed in this paper.Google Scholar
  29. 29.
    Gattineni J, Bates C, Twombley K, et al. FGF-23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009;297:F282–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuro-O M. Overview of the FGF-23-Klotho axis. Pediatr Nephrol. 2010;25(4):583–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of FGF-23 demonstrates an essential physiological role of FGF-23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.PubMedGoogle Scholar
  32. 32.
    Perwad F, Zhang MY, Tenenhouse HS, Portale AA. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alphahydroxylase expression in vitro. Am J Physiol Renal Physiol. 2007;293:F1577–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Hyp_Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11:130–6.CrossRefGoogle Scholar
  34. 34.
    Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM. Survey of the enthesopathy of X-linked hypophosphatemia and its characterization in Hyp mice. Calcif Tissue Int. 2009;85:235–46.PubMedCrossRefGoogle Scholar
  35. 35.
    •• Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res. 2011 Jul;26(7):1381–8. This paper briefly reviews the clinical and pathophysiologic features XLH and offers a guide in response to the conference recommendation.Google Scholar
  36. 36.
    Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008;3:658–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Yavropoulou MP, Kotsa K, Gotzamani Psarrakou A, Papazisi A, Tranga T, Ventis S, et al. Cinacalcet in hyperparathyroidism secondary to X-linked hypophosphatemic rickets: case report and brief literature review. Hormones (Athens). 2010;9(3):274–8.Google Scholar
  38. 38.
    Yang HM, Mao M, Yang F, Wan C. Recombinant growth hormone therapy for X-linked hypophosphatemia in children. Cochrane Database of Systematic Reviews 2005, Issue 1. Art. No.: CD004447. doi: 10.1002/14651858.CD004447.
  39. 39.
    Petje G, Meizer R, Radler C, Aigner N, Grill F. Deformity correction in children with hereditary hypophosphatemic rickets. Clin Orthop Relat Res. 2008;466(12):3078–85.PubMedCrossRefGoogle Scholar
  40. 40.
    Souza MA, Jr Soares LA, Santos MA, Vaisbich MH. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics (Sao Paulo). 2010;65(10):1023–6.Google Scholar
  41. 41.
    Imel EA, DiMeglio LA, Hui SL, et al. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2010;95:1846–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, et al. Therapeutic effects of Anti-FGF-23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2009;24:1879–88.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu ES, Carpenter TO, Gundberg CM, Simpson CA, Insogna KL. Calcitonin Administration in X-Linked Hypophosphatemia. N Engl J Med. 2011;364(17):1678–80.PubMedCrossRefGoogle Scholar
  44. 44.
    ADHR consortium Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF-23. Nat Genet. 2000;26:345–348.Google Scholar
  45. 45.
    Bai XY, Miao D, Goltzman D, Karaplis AC. The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem. 2003;278:9843–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Imel EA, Hui SL, Econs MJ. FGF-23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res. 2007;22(4):520–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, et al. DMP1 mutations in autosomal recessive hypophosphatemiaimplicate a bone matrix protein in the regulation of phosphate homeostasis. Nature Genet. 2006;38:1248–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Höhne W, et al. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet. 2003;34:379–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Rutsch F, Böyer P, Nitschke Y, et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ Cardiovasc Genet. 2008;1:133–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86:267–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86:273–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112(5):683–92.PubMedGoogle Scholar
  54. 54.
    Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer. 2011;18:R53–77.PubMedCrossRefGoogle Scholar
  55. 55.
    Jung GH, Kim JD, Cho Y, et al. A 9-month-old phosphaturic mesenchymal tumor mimicking the intractable rickets. J Pediatr Orthop B. 2010;19(1):127–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Hoffman WH, Jueppner HW, DeYoung BR, O'Dorisio MS, Given KS. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. American Journal of Medical Genetics Part A. 2005;134A:233–6.CrossRefGoogle Scholar
  57. 57.
    Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312:611–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201.PubMedCrossRefGoogle Scholar
  60. 60.
    Ichikawa S, Sorenson AH, Imel EA, Friedman NE, Gertner JM, Econs MJ. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab. 2006;91:4022–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Phulwani P, Bergwitz C, Jaureguiberry G, Rasoulpour M, Estrada E. Hereditary hypophosphatemic rickets with hypercalciuria and nephrolithiasis-identification of a novel SLC34A3/NaPi-IIc mutation. Am J Med Genet A. 2011;155A(3):626–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Paediatric EndocrinologyRoyal Manchester Children’s Hospital, Central Manchester University Hospitals NHS Foundation TrustManchesterUK

Personalised recommendations