Advertisement

Current Osteoporosis Reports

, Volume 6, Issue 4, pp 134–141 | Cite as

The skeleton: Endocrine regulator of phosphate homeostasis

  • Máire E. Doyle
  • Suzanne M. Jan de Beur
Article

Abstract

Phosphorus is an essential element in skeletal development, bone mineralization, membrane composition, nucleotide structure, and cellular signaling. Phosphate, the principal form in which phosphorus is found in the body, is regulated by the complex interplay of the hormones parathyroid hormone (PTH), calcitriol (1,25[OH]2 vitamin D3), and fibroblast growth factor 23 (FGF23). These collectively govern bone mineralization, absorption of phosphorus by the intestine, and renal tubular reabsorption of phosphate. The skeleton is the major storage pool for phosphate and the principal production site for FGF23, a major phosphate regulatory hormone. Recent advances in understanding the molecular basis of disorders of phosphate metabolism have revealed new phosphate-regulatory hormones and provided insight into how these regulators may interface with previously known phosphate-regulatory pathways. Here we outline the current knowledge about the regulation of normal phosphate homeostasis and present a review of the molecular basis of disorders of phosphate homeostasis.

Keywords

FGF23 Level Hypophosphatemic Rickets Renal Phosphate Phosphate Homeostasis Tumoral Calcinosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Mirams M, Robinson BG, Mason RS, Nelson AE: Bone as a source of FGF23: regulation by phosphate? Bone 2004, 35:1192–1199.PubMedCrossRefGoogle Scholar
  2. 2.
    Yoshiko Y, Wang H, Minamizaki T, et al.: Mineralized tissue cells are a principal source of FGF23. Bone 2007, 40:1565–1573.PubMedCrossRefGoogle Scholar
  3. 3.
    Kato K, Jeanneau C, Tarp MA, et al.: Polypeptide GalNActransferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 2006, 281:18370–18377.PubMedCrossRefGoogle Scholar
  4. 4.
    Urakawa I, Yamazaki Y, Shimada T, et al.: Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444:770–774.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuro-o M, Matsumura Y, Aizawa H, et al.: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390:45–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Shimada T, Kakitani M, Yamazaki Y, et al.: Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004, 113:561–568.PubMedGoogle Scholar
  7. 7.
    Tohyama O, Imura A, Iwano A, et al.: Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid betaglucuronides. J Biol Chem 2004, 279:9777–9784.PubMedCrossRefGoogle Scholar
  8. 8.
    Matsumura Y, Aizawa H, Shiraki-Iida T, et al.: Identification of the human Klotho gene and its two transcripts encoding membrane and secreted Klotho protein. Biochem Biophys Res Commun 1998, 242:626–630.PubMedCrossRefGoogle Scholar
  9. 9.
    Bacic D, Wagner CA, Hernando N, et al.: Novel aspects in regulated expression of the renal type IIa Na/Pi-cotransporter. Kidney Int Suppl 2004, (91):S5–S12.Google Scholar
  10. 10.
    Miyamoto K, Ito M, Kuwahata M, et al.: Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 2005, 9:331–335.PubMedCrossRefGoogle Scholar
  11. 11.
    Shimada T, Yamazaki Y, Takahashi M, et al.: Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 2005, 289:F1088–F1095.PubMedCrossRefGoogle Scholar
  12. 12.
    Perwad F, Zhang MY, Tenenhouse HS, Portale AA: Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol Renal Physiol 2007, 293:F1577–F1583.PubMedCrossRefGoogle Scholar
  13. 13.
    Kolek OI, Hines ER, Jones MD, et al.: 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 2005, 289:G1036–G1042.PubMedCrossRefGoogle Scholar
  14. 14.
    Saito H, Maeda A, Ohtomo S, et al.: Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005, 280:2543–2549.PubMedCrossRefGoogle Scholar
  15. 15.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al.: The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007, 117:4003–4008.PubMedGoogle Scholar
  16. 16.
    Shimada T, Mizutani S, Muto T, et al.: Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 2001, 98:6500–6505.PubMedCrossRefGoogle Scholar
  17. 17.
    Shimada T, Urakawa I, Yamazaki Y, et al.: FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 2004, 314:409–414.PubMedCrossRefGoogle Scholar
  18. 18.
    Jan De Beur SM, Finnegan RB, Vassiliadis J, et al.: Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res 2002, 17:1102–1110.CrossRefGoogle Scholar
  19. 19.
    Bowe AE, Finnegan R, Jan de Beur SM, et al.: FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001, 284:977–981.PubMedCrossRefGoogle Scholar
  20. 20.
    White KE, Jonsson KB, Carn G, et al.: The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 2001, 86:497–500.PubMedCrossRefGoogle Scholar
  21. 21.
    Jonsson KB, Zahradnik R, Larsson T, et al.: Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003, 348:1656–1663.PubMedCrossRefGoogle Scholar
  22. 22.
    White KE, Larsson TE, Econs MJ: The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev 2006, 27:221–241.PubMedCrossRefGoogle Scholar
  23. 23.
    ADHR Consortium: Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000, 26:345–348.CrossRefGoogle Scholar
  24. 24.
    Bai XY, Miao D, Goltzman D, Karaplis AC: The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003, 278:9843–9849.PubMedCrossRefGoogle Scholar
  25. 25.
    Shimada T, Muto T, Urakawa I, et al.: Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 2002, 143:3179–3182.PubMedCrossRefGoogle Scholar
  26. 26.
    White KE, Carn G, Lorenz-Depiereux B, et al.: Autosomaldominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001, 60:2079–2086.PubMedCrossRefGoogle Scholar
  27. 27.
    A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium [no authors listed]. Nat Genet 1995, 11:130–136.Google Scholar
  28. 28.
    Liu S, Guo R, Simpson LG, et al.: Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003, 278:37419–37426.PubMedCrossRefGoogle Scholar
  29. 29.
    Benet-Pages A, Lorenz-Depiereux B, Zischka H, et al.: FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004, 35:455–462.PubMedCrossRefGoogle Scholar
  30. 30.
    Feng JQ, Ward LM, Liu S, et al.: Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006, 38:1310–1315.PubMedCrossRefGoogle Scholar
  31. 31.
    Tartaix PH, Doulaverakis M, George A, et al.: In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem 2004, 279:18115–18120.PubMedCrossRefGoogle Scholar
  32. 32.
    Feng JQ, Huang H, Lu Y, et al.: The Dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. J Dent Res 2003, 82:776–780.PubMedCrossRefGoogle Scholar
  33. 33.
    Riminucci M, Collins MT, Fedarko NS, et al.: FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003, 112:683–692.PubMedGoogle Scholar
  34. 34.
    White KE, Cabral JM, Davis SI, et al.: Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 2005, 76:361–367.PubMedCrossRefGoogle Scholar
  35. 35.
    Brownstein CA, Adler F, Nelson-Williams C, et al.: A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A 2008, 105:3455–3460.PubMedCrossRefGoogle Scholar
  36. 36.
    Tieder M, Modai D, Samuel R, et al.: Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 1985, 312:611–617.PubMedCrossRefGoogle Scholar
  37. 37.
    Ichikawa S, Sorenson AH, Imel EA, et al.: Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab 2006, 91:4022–4027.PubMedCrossRefGoogle Scholar
  38. 38.
    Lorenz-Depiereux B, Bastepe M, Benet-Pages A, et al.: DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006, 38:1248–1250.PubMedCrossRefGoogle Scholar
  39. 39.
    Bergwitz C, Roslin NM, Tieder M, et al.: SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 2006, 78:179–192.PubMedCrossRefGoogle Scholar
  40. 40.
    Prie D, Huart V, Bakouh N, et al.: Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 2002, 347:983–991.PubMedCrossRefGoogle Scholar
  41. 41.
    Karim Z, Gérard B, Bakouh N, et al.: NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med 2008, 359:1128–1135.PubMedCrossRefGoogle Scholar
  42. 42.
    Sitara D, Razzaque MS, Hesse M, et al.: Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004, 23:421–432.PubMedCrossRefGoogle Scholar
  43. 43.
    Topaz O, Shurman DL, Bergman R, et al.: Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 2004, 36:579–581.PubMedCrossRefGoogle Scholar
  44. 44.
    Ichikawa S, Lyles KW, Econs MJ: A novel GALNT3 mutation in a pseudoautosomal dominant form of tumoral calcinosis: evidence that the disorder is autosomal recessive. J Clin Endocrinol Metab 2005, 90:2420–2423.PubMedCrossRefGoogle Scholar
  45. 45.
    Chefetz I, Heller R, Galli-Tsinopoulou A, et al.: A novel homozygous missense mutation in FGF23 causes Familial Tumoral Calcinosis associated with disseminated visceral calcification. Hum Genet 2005, 118:261–266.PubMedCrossRefGoogle Scholar
  46. 46.
    Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B: An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005, 14:385–390.PubMedCrossRefGoogle Scholar
  47. 47.
    Araya K, Fukumoto S, Backenroth R, et al.: A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005, 90:5523–5527.PubMedCrossRefGoogle Scholar
  48. 48.
    Ichikawa S, Guigonis V, Imel EA, et al.: Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab 2007, 92:1943–1947.PubMedCrossRefGoogle Scholar
  49. 49.
    Kurosu H, Ogawa Y, Miyoshi M, et al.: Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 2006, 281:6120–6123.PubMedCrossRefGoogle Scholar
  50. 50.
    Ichikawa S, Imel EA, Kreiter ML, et al.: A homozygous missense mutation in human Klotho causes severe tumoral calcinosis. J Clin Invest 2007, 117:2684–2691.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Johns Hopkins Bayview Medical CenterThe Johns Hopkins University School of Medicine, Division of EndocrinologyBaltimoreUSA

Personalised recommendations