Current Osteoporosis Reports

, Volume 5, Issue 3, pp 128–134

Pediatric bone density and fracture



As children grow, they accumulate bone mineral, which serves as a “bone bank” for the future. Any condition that interferes with normal bone mineral accrual during childhood has the potential to reduce peak bone mass and subsequently increase future risk for fracture. In contrast to adults, for whom dual-energy x-ray absorptiometry (DXA) has become the standard clinical instrument for assessing bone mineral density and criteria have been developed to define osteopenia and osteoporosis, information for children is still limited. Numerous issues confound the interpretation of DXA-derived bone mineral density measurements in children, and clinicians often find themselves caught between the limitations of these methods and the practical issue of taking care of their pediatric patient. The explosion of treatment options for postmenopausal osteoporosis has resulted in new options for the treatment of children and adolescents. However, most of these agents have not been sufficiently well studied in children to permit the development of standardized treatment guidelines.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Cassidy JT, Langman CB, Allen SH, Hillman LS: Bone mineral metabolism in children with juvenile rheumatoid arthritis. Pediatr Clin North Am 1995, 42:1017–1033.PubMedGoogle Scholar
  2. 2.
    Teegarden D, Proulx WR, Martin BR, et al.: Peak bone mass in young women. J Bone Miner Res 1995, 10:711–715.PubMedGoogle Scholar
  3. 3.
    Recker RR, Davies KM, Hinders SM, et al.: Bone gain in young adult women. JAMA 1992, 268:2403–2408.PubMedCrossRefGoogle Scholar
  4. 4.
    Bailey DA, Faulkner RA, McKay HA: Growth, physical activity, and bone mineral acquisition. Exerc Sport Sci Rev 1996, 24:233–266.PubMedCrossRefGoogle Scholar
  5. 5.
    Wren TA, Kim PS, Janicka A, et al.: Timing of peak bone mass: discrepancies between CT and DXA. J Clin Endocrinol Metab 2007, 92:938–941.PubMedCrossRefGoogle Scholar
  6. 6.
    Kalkwarf HJ, Zemel BS, Gilsanz V, et al.: The Bone Mineral Density in Childhood Study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab 2007, 92:2087–2099.PubMedCrossRefGoogle Scholar
  7. 7.
    Carter DR, Bouxsein ML, Marcus R: New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992, 7:137–145.PubMedGoogle Scholar
  8. 8.
    Fewtrell MS; British Paediatric & Adolescent Bone Group: Bone densitometry in children assessed by dual x-ray absorptiometry: uses and pitfalls. Arch Dis Child 2003, 88:795–798.PubMedCrossRefGoogle Scholar
  9. 9.
    Kalender WA: Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 1992, 2:82–87.PubMedCrossRefGoogle Scholar
  10. 10.
    Lewis MK, Blake GM, Fogelman I: Patient dose in dual x-ray absorptiometry. Osteoporos Int 1994, 4:11–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Sawyer A, Bachrach LK, Fung EB: Bone Densitometry in Growing Patients: Guidelines for Clinical Practice. Totowa, NJ: Humana Press, 2006.Google Scholar
  12. 12.
    Simpson DE, Dontu VS, Stephens SE, et al.: Large variations occur in bone density measurements of children when using different software. Nucl Med Commun 2005, 26:483–487.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilsanz V, Boechat MI, Roe TF, et al.: Gender differences in vertebral body sizes in children and adolescents. Radiology 1994, 190:673–677.PubMedGoogle Scholar
  14. 14.
    Kovanlikaya A, Loro ML, Hangartner TN, et al.: Osteopenia in children: CT assessment. Radiology 1996, 198:781–784.PubMedGoogle Scholar
  15. 15.
    Bell NH, Shary J, Stevens J, et al.: Demonstration that bone mass is greater in black than in white children. J Bone Miner Res 1991, 6:719–723.PubMedCrossRefGoogle Scholar
  16. 16.
    McCormick DP, Ponder SW, Fawcett HD, Palmer JL: Spinal bone mineral density in 335 normal and obese children and adolescents: evidence for ethnic and sex differences. J Bone Miner Res 1991, 6:507–513.PubMedGoogle Scholar
  17. 17.
    Wuster C, Albanese C, De Aloysio D, et al.: Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 2000, 15:1603–1614.PubMedCrossRefGoogle Scholar
  18. 18.
    Baroncelli GI, Federico G, Bertelloni S, et al.: Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 2001, 49:713–718.PubMedCrossRefGoogle Scholar
  19. 19.
    Zadik Z, Price D, Diamond G: Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int 2003, 14:857–862.PubMedCrossRefGoogle Scholar
  20. 20.
    Gafni RI, Baron J: Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J Pediatr 2004, 144:253–257.PubMedCrossRefGoogle Scholar
  21. 21.
    Lewiecki EM, Watts NB, McClung MR, et al.: Official positions of the International Society for Clinical Densitometry. J Clin Endocrinol Metab 2004, 89:3651–3655.PubMedCrossRefGoogle Scholar
  22. 22.
    Molgaard C, Thomsen BL, Prentice A, et al.: Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 1997, 76:9–15.PubMedCrossRefGoogle Scholar
  23. 23.
    Chan GM, Hess M, Hollis J, Book LS: Bone mineral status in childhood accidental fractures. Am J Dis Child 1984, 138:569–570.PubMedGoogle Scholar
  24. 24.
    Jones G, Ma D, Cameron F: Bone density interpretation and relevance in Caucasian children aged 9–17 years of age: insights from a population-based fracture study. J Clin Densitom 2006, 9:202–209.PubMedCrossRefGoogle Scholar
  25. 25.
    Clark EM, Ness AR, Bishop NJ, Tobias JH: Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 2006, 21:1489–1495.PubMedCrossRefGoogle Scholar
  26. 26.
    von Scheven E, Gordon CM, Wypij D, et al.: Variable deficits of bone mineral despite chronic glucocorticoid therapy in pediatric patients with inflammatory diseases: a Glaser Pediatric Research Network study. J Pediatr Endocrinol Metab 2006, 19:821–830.Google Scholar
  27. 27.
    Khosla S: Minireview: the OPG/RANKL/RANK system. Endocrinology 2001, 142:5050–5055.PubMedCrossRefGoogle Scholar
  28. 28.
    Theoleyre S, Wittrant Y, Tat SK, et al.: The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004, 15:457–475.PubMedCrossRefGoogle Scholar
  29. 29.
    Manolagas SC, Jilka RL: Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995, 332:305–311.PubMedCrossRefGoogle Scholar
  30. 30.
    Bianchi ML: How to manage osteoporosis in children. Best Pract Res Clin Rheumatol 2005, 19:991–1005.PubMedCrossRefGoogle Scholar
  31. 31.
    NIH Consensus Conference. Optimal calcium intake. NIH Consensus Development Panel on Optimal Calcium Intake. JAMA 1994, 272:1942–1948.CrossRefGoogle Scholar
  32. 32.
    Goulding A, Rockell JE, Black RE, et al.: Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc 2004, 104:250–253.PubMedCrossRefGoogle Scholar
  33. 33.
    Winzenberg T, Shaw K, Fryer J, Jones G: Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials [review]. BMJ 2006, 333:775.PubMedCrossRefGoogle Scholar
  34. 34.
    Bassett CA, Donath A, Macagno F, et al.: Diphosphonates in the treatment of myositis ossificans. Lancet 1969, 2(7625):845.PubMedCrossRefGoogle Scholar
  35. 35.
    Glorieux FH, Bishop NJ, Plotkin H, et al.: Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 1998, 339:947–952.PubMedCrossRefGoogle Scholar
  36. 36.
    Grissom LE, Harcke HT: Radiographic features of bisphosphonate therapy in pediatric patients. Pediatr Radiol 2003, 33:226–229.PubMedGoogle Scholar
  37. 37.
    Park EA: The imprinting of nutritional disturbances on the growing bone. Pediatrics 1964, 33(suppl):815–862.PubMedGoogle Scholar
  38. 38.
    Rauch F, Travers R, Plotkin H, Glorieux FH: The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest 2002, 110:1293–1299.PubMedGoogle Scholar
  39. 39.
    Weber M, Roschger P, Fratzl-Zelman N, et al.: Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone 2006, 39:616–622.PubMedCrossRefGoogle Scholar
  40. 40.
    Brumsen C, Hamdy NA, Papapoulos SE: Long-term effects of bisphosphonates on the growing skeleton. Studies of young patients with severe osteoporosis [review]. Medicine (Baltimore) 1997, 76:266–283.CrossRefGoogle Scholar
  41. 41.
    Whyte MP, Wenkert D, Clements KL, et al.: Bisphosphonate-induced osteopetrosis. N Engl J Med 2003, 349:457–463.PubMedCrossRefGoogle Scholar
  42. 42.
    Graepel P, Bentley P, Fritz H, et al.: Reproduction toxicity studies with pamidronate. Arzneimittelforschung 1992, 42:654–667.PubMedGoogle Scholar
  43. 43.
    Patlas N, Golomb G, Yaffe P, et al.: Transplacental effects of bisphosphonates on fetal skeletal ossification and mineralization in rats. Teratology 1999, 60:68–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Minsker DH, Manson JM, Peter CP: Effects of the bisphosphonate, alendronate, on parturition in the rat. Toxicol Appl Pharmacol 1993, 121:217–223.PubMedCrossRefGoogle Scholar
  45. 45.
    Munns CF, Rauch F, Ward L, Glorieux FH: Maternal and fetal outcome after long-term pamidronate treatment before conception: a report of two cases. J Bone Miner Res 2004, 19:1742–1745.PubMedCrossRefGoogle Scholar
  46. 46.
    Hamann KL, Lane NE: Parathyroid hormone update. Rheum Dis Clin North Am 2006, 32:703–719.PubMedCrossRefGoogle Scholar
  47. 47.
    Hodsman AB, Bauer DC, Dempster DW, et al.: Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 2005, 26:688–703.PubMedCrossRefGoogle Scholar
  48. 48.
    Hind K, Burrows M: Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 2007, 40:14–27.PubMedCrossRefGoogle Scholar
  49. 49.
    Gilsanz V, Wren TA, Sanchez M, et al.: Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006, 21:1464–1474.PubMedCrossRefGoogle Scholar
  50. 50.
    Schumacher HR: Primer on the Rheumatic Diseases, edn 10. Atlanta, GA: Arthritis Foundation; 1993.Google Scholar

Copyright information

© Current Medicine Group, LLC 2007

Authors and Affiliations

  1. 1.Pediatric RheumatologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations