Current Osteoporosis Reports

, Volume 5, Issue 3, pp 105–111

Diabetes, fracture, and bone fragility



Recent studies have added to the evidence that type 1 and type 2 diabetes are associated with increased risk of hip fracture and other fractures. More frequent falls probably account for some of this increased risk, but reduced bone strength may also play a role. Although type 1 diabetes is associated with lower bone density, those with type 2 diabetes usually have elevated bone density. Yet for both types of diabetes, bone appears to be more fragile for a given density. Diabetes can affect bone through multiple pathways—some with contradictory effects—including obesity, insulin levels, hyperglycemia, and advanced glycation end products in collagen. Treatment with thiazolidinediones may increase fracture risk, at least in older women. Clinicians need to be aware of the increased fracture risk associated with diabetes. Additional research is needed to clarify the mechanisms underlying this increased risk and the best approaches to fracture prevention.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Vestergaard P: Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 2007, 18:427–444.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmed LA, Joakimsen RM, Berntsen GK, et al.: Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 2006, 17:495–500.PubMedCrossRefGoogle Scholar
  3. 3.
    Vestergaard P, Rejnmark L, Mosekilde L: Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005, 48:1292–1299.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz AV, Sellmeyer DE: Women, type 2 diabetes, and fracture risk. Curr Diab Rep 2004, 4:364–369.PubMedCrossRefGoogle Scholar
  5. 5.
    Holmberg AH, Johnell O, Nilsson PM, et al.: Risk factors for hip fractures in a middle-aged population: a study of 33,000 men and women. Osteoporos Int 2005, 16:2185–2194.PubMedCrossRefGoogle Scholar
  6. 6.
    Bonds DE, Larson JC, Schwartz AV, et al.: Risk of fracture among women with type 2 diabetes: the Women’s Health Initiative observational study. J Clin Endocrinol Metab 2006, 91:3404–3410.PubMedCrossRefGoogle Scholar
  7. 7.
    Janghorbani M, Feskanich D, Willett WC, Hu F: Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 2006, 29:1573–1578.PubMedCrossRefGoogle Scholar
  8. 8.
    Lipscombe LL, Jamal SA, Booth GL, Hawker GA: The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 2007, 30:835–841.PubMedCrossRefGoogle Scholar
  9. 9.
    Dobnig H, Piswanger-Solkner JC, Roth M, et al.: Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 2006, 91:3355–3363.PubMedCrossRefGoogle Scholar
  10. 10.
    Holmberg AH, Johnell O, Nilsson PM, et al.: Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 2006, 17:1065–1077.PubMedCrossRefGoogle Scholar
  11. 11.
    Nicodemus KK, Folsom AR, Iowa Women’s Health Study: Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001, 24:1192–1197.PubMedCrossRefGoogle Scholar
  12. 12.
    Hanley DA, Brown JP, Tenenhouse A, et al.: Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res 2003, 18:784–790.PubMedCrossRefGoogle Scholar
  13. 13.
    Ensrud KE, Thompson DE, Cauley JA, et al.: Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc 2000, 48:241–249.PubMedGoogle Scholar
  14. 14.
    Schwartz AV, Sellmeyer DE, Ensrud KE, et al.: Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001, 86:32–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Johnell O, Kanis JA, Black DM, et al.: Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res 2004, 19:764–772.PubMedCrossRefGoogle Scholar
  16. 16.
    Maurer MS, Burcham J, Cheng H: Diabetes mellitus is associated with an increased risk of falls in elderly residents of a long-term care facility. J Gerontol A Biol Sci Med Sci 2005, 60:1157–1162.PubMedGoogle Scholar
  17. 17.
    de Liefde I, van der Klift M, de Laet CE, et al.: Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 2005, 16:1713–1720.PubMedCrossRefGoogle Scholar
  18. 18.
    Volpato S, Leveille SG, Blaum C, et al.: Risk factors for falls in older disabled women with diabetes: The Women’s Health and Aging Study. J Gerontol A Biol Sci Med Sci 2005, 60:1539–1545.PubMedGoogle Scholar
  19. 19.
    Strotmeyer ES, Cauley JA, Schwartz AV, et al.: Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: The Health, Aging, and Body Composition Study. Arch Intern Med 2005, 165:1612–1617.PubMedCrossRefGoogle Scholar
  20. 20.
    Strotmeyer ES, Cauley JA, Orchard TJ, et al.: Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care 2006, 29:306–311.PubMedCrossRefGoogle Scholar
  21. 21.
    Heap J, Murray MA, Miller SC, et al.: Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J Pediatr 2004, 144:56–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Moyer-Mileur LJ, Dixon SB, Quick JL, et al.: Bone mineral acquisition in adolescents with type 1 diabetes. J Pediatr 2004, 145:662–669.PubMedCrossRefGoogle Scholar
  23. 23.
    Miazgowski T, Pynka S, Noworyta-Zietara M, et al.: Bone mineral density and hip structural analysis in type 1 diabetic men. Eur J Endocrinol 2007, 156:123–127.PubMedCrossRefGoogle Scholar
  24. 24.
    Strotmeyer ES, Cauley JA, Schwartz AV, et al.: Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res 2004, 19:1084–1091.PubMedCrossRefGoogle Scholar
  25. 25.
    Register TC, Lenchik L, Hsu FC, et al.: Type 2 diabetes is not independently associated with spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Bone 2006, 39:628–633.PubMedCrossRefGoogle Scholar
  26. 26.
    Schwartz AV, Sellmeyer DE, Strotmeyer ES, et al.: Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res 2005, 20:596–603.PubMedCrossRefGoogle Scholar
  27. 27.
    Keegan TH, Schwartz AV, Bauer DC, et al.: Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the Fracture Intervention Trial. Diabetes Care 2004, 27:1547–1553.PubMedCrossRefGoogle Scholar
  28. 28.
    Krakauer JC, McKenna MJ, Buderer NF, et al.: Bone loss and bone turnover in diabetes. Diabetes 1995, 44:775–782.PubMedCrossRefGoogle Scholar
  29. 29.
    Strotmeyer ES, Cauley JA, Schwartz AV, et al.: Reduced peripheral nerve function is related to lower hip BMD and calcaneal QUS in older white and black adults: The Health, Aging, and Body Composition Study. J Bone Miner Res 2006, 21:1803–1810.PubMedCrossRefGoogle Scholar
  30. 30.
    Saito M, Fujii K, Mori Y, Marumo K: Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 2006, 17:1514–1523.PubMedCrossRefGoogle Scholar
  31. 31.
    Leslie WD, Lix LM, Prior HJ, et al.: Biphasic fracture risk in diabetes: a population-based study. Bone 2007, 40:1595–1601.PubMedCrossRefGoogle Scholar
  32. 32.
    Botolin S, McCabe LR: Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology 2007, 148:198–205.PubMedCrossRefGoogle Scholar
  33. 33.
    Carnevale V, Romagnoli E, D’Erasmo E: Skeletal involvement in patients with diabetes mellitus. Diabetes Metab Res Rev 2004, 20:196–204.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki K, Kurose T, Takizawa M, et al.: Osteoclastic function is accelerated in male patients with type 2 diabetes mellitus: the preventive role of osteoclastogenesis inhibitory factor/osteoprotegerin (OCIF/OPG) on the decrease of bone mineral density. Diabetes Res Clin Pract 2005, 68:117–125.PubMedCrossRefGoogle Scholar
  35. 35.
    Gerdhem P, Isaksson A, Akesson K, Obrant KJ: Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 2005, 16:1506–1512.PubMedCrossRefGoogle Scholar
  36. 36.
    Thrailkill KM, Lumpkin CK, Jr., Bunn RC, et al.: Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 2005, 289:E735–E745.PubMedCrossRefGoogle Scholar
  37. 37.
    Irwin R, Lin HV, Motyl KJ, McCabe LR: Normal bone density obtained in the absence of insulin receptor expression in bone. Endocrinology 2006, 47:5760–5767.CrossRefGoogle Scholar
  38. 38.
    Balint E, Szabo P, Marshall CF, Sprague SM: Glucose-induced inhibition of in vitro bone mineralization. Bone 2001, 28:21–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Botolin S, McCabe LR: Chronic hyperglycemia modulates osteoblast gene expression through osmotic and nonosmotic pathways. J. Cell Biochem 2006, 99:411–424.PubMedCrossRefGoogle Scholar
  40. 40.
    Gregorio F, Cristallini S, Santeusanio F, et al.: Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract 1994, 23:43–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Odetti P, Rossi S, Monacelli F, et al.: Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 2005, 1043:710–717.PubMedCrossRefGoogle Scholar
  42. 42.
    Saito M, Fujii K, Soshi S, Tanaka T: Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 2006, 17:986–995.PubMedCrossRefGoogle Scholar
  43. 43.
    Hernandez CJ, Tang SY, Baumbach BM, et al.: Trabecular microfracture and the influence of pyridinium and nonenzymatic glycation-mediated collagen cross-links. Bone 2005, 37:825–832.PubMedCrossRefGoogle Scholar
  44. 44.
    Viguet-Carrin S, Roux JP, Arlot ME, et al.: Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 2006, 39:1073–1079.PubMedCrossRefGoogle Scholar
  45. 45.
    Valcourt U, Merle B, Gineyts E, et al.: Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem 2007, 282:5691–5703.PubMedCrossRefGoogle Scholar
  46. 46.
    Hein G, Weiss C, Lehmann G, et al.: Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 2006, 65:101–104.PubMedCrossRefGoogle Scholar
  47. 47.
    Kume S, Kato S, Yamagishi S, et al.: Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 2005, 20:1647–1658.PubMedCrossRefGoogle Scholar
  48. 48.
    Miyata T, Notoya K, Yoshida K, et al.: Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 1997, 8:260–270.PubMedGoogle Scholar
  49. 49.
    Ding KH, Wang ZZ, Hamrick MW, et al.: Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 2006, 340:1091–1097.PubMedCrossRefGoogle Scholar
  50. 50.
    Ivers RQ, Cumming RG, Mitchell P, Peduto AJ: Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care 2001, 24:1198–1203.PubMedCrossRefGoogle Scholar
  51. 51.
    Quandt SA, Stafford JM, Bell RA, et al.: Predictors of falls in a multiethnic population of older rural adults with diabetes. J Gerontol A Biol Sci Med Sci 2006, 61:394–398.PubMedGoogle Scholar
  52. 52.
    Miao J, Brismar K, Nyren O, et al.: Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 2005, 28:2850–2855.PubMedCrossRefGoogle Scholar
  53. 53.
    Short R: Fracture risk a class effect of thiazolidinediones in women. BMJ 2007, 334:551.PubMedCrossRefGoogle Scholar
  54. 54.
    Grey A, Bolland M, Gamble G, et al.: The peroxisome-proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007, 92:1305–1310.PubMedCrossRefGoogle Scholar
  55. 55.
    Schwartz AV, Sellmeyer DE, Vittinghoff E, et al.: Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 2006, 91:3349–3354.PubMedCrossRefGoogle Scholar
  56. 56.
    Rzonca SO, Suva LJ, Gaddy D, et al.: Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 2004, 145:401–406.PubMedCrossRefGoogle Scholar
  57. 57.
    Tilling LM, Darawil K, Britton M: Falls as a complication of diabetes mellitus in older people. J Diabetes Complications 2006, 20:158–162.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2007

Authors and Affiliations

  1. 1.Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations