Advertisement

Current Osteoporosis Reports

, Volume 5, Issue 2, pp 67–72 | Cite as

Novel osteoclast signaling mechanisms

  • Masahiro Shinohara
  • Hiroshi TakayanagiEmail author
Article

Abstract

Osteoclasts are cells of monocyte/macrophage origin that degrade bone matrix. Receptor activator of NF-κB ligand (RANKL) induces osteoclast differentiation in the presence of macrophage colony-stimulating factor. RANKL activates the tumor necrosis factor receptor-associated factor 6, c-Fos, and calcium signaling pathways, all of which are indispensable for the induction and activation of nuclear factor of activated T cells (NFAT) c1. NFATc1 is the master transcription factor for osteoclast differentiation, which regulates many osteoclast-specific genes. Multiple immunoglobulin-like receptors associated with immunoreceptor tyrosine-based activation motif (ITAM)-harboring adapters, Fc receptor common γ subunit (FcRγ), and DNAX-activating protein (DAP) 12 mediate costimulatory signals for RANK, which activate calcium signaling through phospholipase Cγ (PLCγ). In addition to calcineurin-NFATc1, calcium signaling activates the CaMK-CREB (calcium/calmodulin activated kinase-cyclic AMP-response element binding protein) pathway, which also plays a critical role in osteoclastogenesis. This review summarizes recent advances in the study of signaling mechanisms of osteoclast differentiation.

Keywords

Osteoclast Differentiation Osteopetrosis Costimulatory Signal Osteoclast Precursor Cell NFATc1 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002, 2:389–406.PubMedCrossRefGoogle Scholar
  2. 2.
    Boyle WJ, Simonet WS, Lacey DL: Osteoclast differentiation and activation. Nature 2003, 423:337–342.PubMedCrossRefGoogle Scholar
  3. 3.
    Teitelbaum SL, Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet 2003, 4:638–649.PubMedCrossRefGoogle Scholar
  4. 4.
    Takayanagi H: Mechanistic insight into osteoclast differentiation in osteoimmunology [review]. J Mol Med 2005, 83:170–179.PubMedCrossRefGoogle Scholar
  5. 5.
    Yoshida H, Hayashi S, Kunisada T, et al.: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990, 345:442–444.PubMedCrossRefGoogle Scholar
  6. 6.
    Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, et al.: Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A 1990, 87:4828–4832.PubMedCrossRefGoogle Scholar
  7. 7.
    Dai XM, Ryan GR, Hapel AJ, et al.: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002, 99:111–120.PubMedCrossRefGoogle Scholar
  8. 8.
    Pixley FJ, Stanley ER: CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 2004, 14:628–638.PubMedCrossRefGoogle Scholar
  9. 9.
    Ross FP, Teitelbaum SL: α vβ3 and macrophage colonystimulating factor: partners in osteoclast biology. Immunol Rev 2005, 208:88–105.PubMedCrossRefGoogle Scholar
  10. 10.
    Arai F, Miyamoto T, Ohneda O, et al.: Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors. J Exp Med 1999, 190:1741–1754.PubMedCrossRefGoogle Scholar
  11. 11.
    Tondravi MM, McKercher SR, Anderson K, et al.: Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 1997, 386:81–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Weilbaecher KN, Motyckova G, Huber WE, et al.: Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol Cell 2001, 8:749–758.PubMedCrossRefGoogle Scholar
  13. 13.
    Hodgkinson CA, Moore KJ, Nakayama A, et al.: Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helixzipper protein. Cell 1993, 74:395–404.PubMedCrossRefGoogle Scholar
  14. 14.
    McGill GG, Horstmann M, Widlund HR, et al.: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 2002, 109:707–718.PubMedCrossRefGoogle Scholar
  15. 15.
    Anderson DM, Maraskovsky E, Billingsley WL, et al.: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997, 390:175–179.PubMedCrossRefGoogle Scholar
  16. 16.
    Yasuda H, Shima N, Nakagawa N, et al.: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998, 95:3597–3602.PubMedCrossRefGoogle Scholar
  17. 17.
    Lacey DL, Timms E, Tan HL, et al.: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93:165–176.PubMedCrossRefGoogle Scholar
  18. 18.
    Kong YY, Yoshida H, Sarosi I, et al.: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397:315–323.PubMedCrossRefGoogle Scholar
  19. 19.
    Dougall WC, Glaccum M, Charrier K, et al.: RANK is essential for osteoclast and lymph node development. Genes Dev 1999, 13:2412–2424.PubMedCrossRefGoogle Scholar
  20. 20.
    Bucay N, Sarosi I, Dunstan CR, et al.: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998, 12:1260–1268.PubMedCrossRefGoogle Scholar
  21. 21.
    Gohda J, Akiyama T, Koga T, et al.: RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J 2005, 24:790–799.PubMedCrossRefGoogle Scholar
  22. 22.
    Naito A, Azuma S, Tanaka S, et al.: Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6 -deficient mice. Genes Cells 1999, 4:353–362.PubMedCrossRefGoogle Scholar
  23. 23.
    Kobayashi T, Walsh PT, Walsh MC, et al.: TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 2003, 19:353–363.PubMedCrossRefGoogle Scholar
  24. 24.
    Wada T, Nakashima T, Oliveira-dos-Santos AJ, et al.: The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 2005, 11:394–399.PubMedCrossRefGoogle Scholar
  25. 25.
    Iotsova V, Caamano J, Loy J, et al.: Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat Med 1997, 3:1285–1289.PubMedCrossRefGoogle Scholar
  26. 26.
    Franzoso G, Carlson L, Xing L, et al.: Requirement for NF-κB in osteoclast and B-cell development. Genes Dev 1997, 11:3482–3496.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang ZQ, Ovitt C, Grigoriadis AE, et al.: Bone and haematopoietic defects in mice lacking c-fos. Nature 1992, 360:741–745.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson RS, Spiegelman BM, Papaioannou V: Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 1992, 71:577–586.PubMedCrossRefGoogle Scholar
  29. 29.
    David JP, Sabapathy K, Hoffmann O, et al.: JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms. J Cell Sci 2002, 115:4317–4325.PubMedCrossRefGoogle Scholar
  30. 30.
    Kenner L, Hoebertz A, Beil T, et al.: Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 2004, 164:613–623.PubMedCrossRefGoogle Scholar
  31. 31.
    Takayanagi H, Kim S, Koga T, et al.: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002, 3:889–901.PubMedCrossRefGoogle Scholar
  32. 32.
    Asagiri M, Sato K, Usami T, et al.: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005, 202:1261–1269.PubMedCrossRefGoogle Scholar
  33. 33.
    Koga T, Inui M, Inoue K, et al.: Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004, 428:758–763.PubMedCrossRefGoogle Scholar
  34. 34.
    Mocsai A, Humphrey MB, Van Ziffle JA, et al.: The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci U S A 2004, 101:6158–6163.PubMedCrossRefGoogle Scholar
  35. 35.
    Mao D, Epple H, Uthgenannt B, et al.: PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 2006, 116:2869–2879.PubMedCrossRefGoogle Scholar
  36. 36.
    Sato K, Suematsu A, Nakashima T, et al.: Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 2007, 12:1410–1416.CrossRefGoogle Scholar
  37. 37.
    Matsuo K, Galson DL, Zhao C, et al.: Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J Biol Chem 2004, 279:26475–26480.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim Y, Sato K, Asagiri M, et al.: Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem 2005, 280:32905–32913.PubMedCrossRefGoogle Scholar
  39. 39.
    Matsumoto M, Kogawa M, Wada S, et al.: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 2004, 279:45969–45979.PubMedCrossRefGoogle Scholar
  40. 40.
    Crotti TN, Flannery M, Walsh NC, et al.: NFATc1 regulation of the human β 3 integrin promoter in osteoclast differentiation. Gene 2006, 372:92–102.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim K, Kim JH, Lee J, et al.: Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 2005, 280:35209–35216.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen L, Glover JN, Hogan PG, et al.: Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 1998, 392:42–48.PubMedCrossRefGoogle Scholar
  43. 43.
    Yagi M, Miyamoto T, Sawatani Y, et al.: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 2005, 202:345–351.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee SH, Rho J, Jeong D, et al.: v-ATPase V 0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 2006, 12:1403–1409.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Cell Signaling, Graduate SchoolTokyo Medical and Dental University and COE Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and BoneTokyoJapan

Personalised recommendations