Current Osteoporosis Reports

, Volume 5, Issue 2, pp 56–61

Effects of microarchitecture on bone strength

Article

Abstract

Bone strength and stiffness depend strongly on bone mass, but they also depend on the microarchitecture and tissue quality of both cancellous and cortical bone. All these aspects differ between individuals and between anatomic sites. This review discusses ways to characterize the three-dimensional cancellous architecture as well as changes in architecture and bone composition caused by bone remodeling. The methods used range from detailed descriptions of sizes and distances in cancellous bone to coarser texture analysis methods using clinical data. As the resolution of clinical images increases, it may become possible to use knowledge of the relationship between bone microarchitecture and strength to predict fracture risk clinically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Ott SM: When bone mass fails to predict bone failure. Calcif Tissue Int 1993, 53(suppl 1):S7–S13.PubMedCrossRefGoogle Scholar
  2. 2.
    Tanck E, Homminga J, van Lenthe GH, Huiskes R: Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone 2001, 28:650–654.PubMedCrossRefGoogle Scholar
  3. 3.
    Brockstedt H, Kassem M, Eriksen EF, et al.: Age-and sex-related changes in iliac cortical bone mass and remodeling. Bone 1993, 14:681–691.PubMedCrossRefGoogle Scholar
  4. 4.
    Jordan GR, Loveridge N, Bell KL, et al.: Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone 2000, 26:305–313.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper DM, Turinsky AL, Sensen CW, Hallgrimsson B: Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec B New Anat 2003, 274:169–179.PubMedCrossRefGoogle Scholar
  6. 6.
    Martin RB, Ishida J: The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 1989, 22:419–426.PubMedCrossRefGoogle Scholar
  7. 7.
    Boskey AL: Mineralization, structure, and function of bone. In Dynamics of Bone and Cartilage Metabolism. Edited by Seibel MJ, Robins SP, Bilezikian JP. San Diego: Academic Press, 1999:153–164.Google Scholar
  8. 8.
    van der Linden JC, Birkenhager-Frenkel DH, Verhaar JA, Weinans H: Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J Biomech 2001, 34:1573–1580.PubMedCrossRefGoogle Scholar
  9. 9.
    Rho JY, Zioupos P, Currey JD, Pharr GM: Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J Biomech 2002, 35:189–198.PubMedCrossRefGoogle Scholar
  10. 10.
    Phelps JB, Hubbard GB, Wang X, Agrawal CM: Microstructural heterogeneity and the fracture toughness of bone. J Biomed Mater Res 2000, 51:735–741.PubMedCrossRefGoogle Scholar
  11. 11.
    Parfitt AM, Drezner MK, Glorieux FH, et al.: Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987, 2:595–610.PubMedCrossRefGoogle Scholar
  12. 12.
    Day JS, Ding M, Odgaard A, et al.: Parallel plate model for trabecular bone exhibits volume fraction-dependent bias. Bone 2000, 27:715–720.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuhn JL, Goldstein SA, Feldkamp LA, et al.: Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 1990, 8:833–842.PubMedCrossRefGoogle Scholar
  14. 14.
    Odgaard A: Three-dimensional methods for quantification of cancellous bone architecture. Bone 1997, 20:315–328.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Rietbergen B, Odgaard A, Kabel J, Huiskes R: Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 1998, 16:23–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Homminga J, McCreadie BR, Ciarelli TE, et al.: Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 2002, 30:759–764.PubMedCrossRefGoogle Scholar
  17. 17.
    Hildebrand T, Ruegsegger P: Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1997, 1:15–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Bevill G, Eswaran SK, Gupta A, et al.: Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 2006, 39:1218–1225.PubMedCrossRefGoogle Scholar
  19. 19.
    Mittra E, Rubin C, Qin YX: Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech 2005, 38:1229–1237.PubMedCrossRefGoogle Scholar
  20. 20.
    Glatt M, Pataki A, Evans GP, et al.: Loss of vertebral bone and mechanical strength in estrogen-deficient rats is prevented by long-term administration of zoledronic acid. Osteoporos Int 2004, 15:707–715.PubMedCrossRefGoogle Scholar
  21. 21.
    Hernandez CJ, Gupta A, Keaveny TM: A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res 2006, 21:1248–1255.PubMedCrossRefGoogle Scholar
  22. 22.
    Van Rietbergen B, Weinans H, Huiskes R, Odgaard A: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 1995, 28:69–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Day JS: Bone quality: the mechanical effects of microarchitecture and matrix properties [thesis]. Rotterdam, Netherlands: Erasmus University Rotterdam; 2005.Google Scholar
  24. 24.
    van der Linden JC, Homminga J, Verhaar JAN, Weinans H: Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 2001, 16:457–465.PubMedCrossRefGoogle Scholar
  25. 25.
    van der Linden JC, Verhaar JAN, Weinans H: A threedimensional simulation of age-related remodeling in trabecular bone. J Bone Miner Res 2001, 16:688–696.CrossRefGoogle Scholar
  26. 26.
    Waarsing JH, Day JS, van der Linden JC, et al.: Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone 2004, 34:163–169.PubMedCrossRefGoogle Scholar
  27. 27.
    Waarsing JH, Day JS, Verhaar JA, et al.: Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats. J Orthop Res 2006. 24:926–935.PubMedCrossRefGoogle Scholar
  28. 28.
    Guggenbuhl P, Bodic F, Hamel L, et al.: Texture analysis of x-ray radiographs of iliac bone is correlated with bone micro-CT. Osteoporos Int 2006, 17:447–454.PubMedCrossRefGoogle Scholar
  29. 29.
    Teo JC, Si-Hoe KM, Keh JE, Teoh SH: Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech (Bristol, Avon) 2006, 21:235–244.CrossRefGoogle Scholar
  30. 30.
    Benhamou CL, Poupon S, Lespessailles E, et al.: Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 2001, 16:697–704.PubMedCrossRefGoogle Scholar
  31. 31.
    Pothuaud L, Lespessailles E, Harba R, et al.: Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 1998, 8:618–625.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of OrthopaedicsErasmus MCRotterdamThe Netherlands

Personalised recommendations