Skip to main content

Advertisement

Log in

Immunotherapy for the Treatment of Acute Lymphoblastic Leukemia

  • Leukemia (A Aguayo, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Immunotherapy for the treatment of acute lymphoblastic leukemia (ALL) broadens therapeutic options beyond chemotherapy and targeted therapy. Here, we review the use of monoclonal antibody-based drugs and cellular therapies to treat ALL. We discuss the challenges facing the field regarding the optimal timing and sequencing of these therapies in relation to other treatment options as well as considerations of cost effectiveness.

Recent Findings

By early identification of patients at risk for leukemic relapse, monoclonal antibody and cellular immunotherapies can be brought to the forefront of treatment options. Novel CAR design and manufacturing approaches may enhance durable patient response. Multiple clinical trials are now underway to evaluate the sequence and timing of monoclonal antibody, cellular therapy, and/or stem cell transplantation.

Summary

The biologic and clinical contexts in which immunotherapies have advanced the treatment of ALL confer optimism that more patients will achieve durable remissions. Immunotherapy treatments in ALL will expand through rationally targeted approaches alongside advances in CAR T cell therapy design and clinical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Oncology NCPGi: Pediatric acute lymphoblastic leukemia, (ed May 30, 2019), 2019.

  2. Oncology NCPGi: Acute lymphoblastic leukemia, (ed May 15, 2019), 2019.

  3. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia consortium study. J Clin Oncol. 2010;28:648–54.

    Article  PubMed  Google Scholar 

  4. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.

    Article  CAS  PubMed  Google Scholar 

  5. Heikamp EB, Pui CH. Next-generation evaluation and treatment of pediatric acute lymphoblastic leukemia. J Pediatr. 2018;203:14–24.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. • Berry DA, Zhou S, Higley H, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3:e170580. The value of having achieved MRD negativity is substantial in both pediatric and adult patients with ALL. This review helps quantitate this benefit across studies which highlights the utility of MRD measurement as an early measure of disease response for evaluating new therapies, improving the efficiency of clinical trials, accelerating drug development, and for regulatory approval.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29:551–65.

    Article  PubMed  Google Scholar 

  8. Bassan R, Bourquin JP, DeAngelo DJ, et al New approaches to the management of adult acute lymphoblastic leukemia. J Clin Oncol JCO2017773648, 2018.

  9. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Müschen M. Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nat Rev Cancer. 2018;18:103–16.

    Article  PubMed  CAS  Google Scholar 

  11. Jeha S, Coustan-Smith E, Pei D, Sandlund JT, Rubnitz JE, Howard SC, et al. Impact of tyrosine kinase inhibitors on minimal residual disease and outcome in childhood Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2014;120:1514–9.

    Article  CAS  PubMed  Google Scholar 

  12. Piccaluga PP, Arpinati M, Candoni A, Laterza C, Paolini S, Gazzola A, et al. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leuk Lymphoma. 2011;52:325–7.

    Article  PubMed  Google Scholar 

  13. Thomas DA, O'Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Kantarjian HM, De Angelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740–53. This phase 3 trial investigates treatment of adults with relapsed or refractory acute lymphoblastic leukemia with inotuzumab ozogamicin (inotuzumab ozogamicin group) or standard intensive chemotherapy (standard-therapy group). The authors demonstrate a survival benefit conferred by the use of immunotherapy in this patient population and discuss mechanisms of response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhojwani D, Sposto R, Shah NN, Rodriguez V, Yuan C, Stetler-Stevenson M, et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2019;33:884–92.

    Article  CAS  PubMed  Google Scholar 

  16. Loffler A, Kufer P, Lutterbuse R, et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95:2098–103.

    Article  CAS  PubMed  Google Scholar 

  17. Klinger M, Brandl C, Zugmaier G, Hijazi Y, Bargou RC, Topp MS, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119:6226–33.

    Article  CAS  PubMed  Google Scholar 

  18. Nagorsen D, Kufer P, Baeuerle PA, Bargou R. Blinatumomab: a historical perspective. Pharmacol Ther. 2012;136:334–42.

    Article  CAS  PubMed  Google Scholar 

  19. Lee DW, Barrett DM, Mackall C, Orentas R, Grupp SA. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin Cancer Res. 2012;18:2780–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10:267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest. 2015;125:3392–400.

    Article  PubMed  PubMed Central  Google Scholar 

  22. •• Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59. This phase 1 trial involving adults with relapsed B-cell ALL who received an infusion of autologous T cells expressing the 19-28z CAR reports safety and long-term outcomes alongside associations with demographic, clinical, and disease characteristics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  PubMed  Google Scholar 

  27. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129:3322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Hay KA, Gauthier J, Hirayama AV, et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood. 2019;133:1652–63. This retrospective single institution study in patients with relapsed/refractory B-ALL enrolled in a phase 1/2 clinical trial evaluating lymphodepletion chemotherapy followed by CD19 CAR T-cell therapy identifies critical clinical factors that place cellular immunotherapy success into practical context.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–19.

    Article  CAS  PubMed  Google Scholar 

  30. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55.

    Article  CAS  PubMed  Google Scholar 

  31. Lowe KL, Mackall CL, Norry E, Amado R, Jakobsen BK, Binder G. Fludarabine and neurotoxicity in engineered T-cell therapy. Gene Ther. 2018;25:176–91.

    Article  CAS  PubMed  Google Scholar 

  32. Salter AI, Pont MJ, Riddell SR. Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood. 2018;131:2621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126:2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24:563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125:4017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25:625–38.

    Article  CAS  PubMed  Google Scholar 

  38. •• Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48. This phase 2, single-cohort, 25-center, global study of tisagenlecleucel in pediatric and young adult patients with CD19+ relapsed or refractory B-cell ALL reports the overall remission rate (the rate of complete remission or complete remission with incomplete hematologic recovery) within 3 months and clinical experience with transient high-grade toxic effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121:5154–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am Soc Clin Oncol Educ Book. 2019;39:433–44.

    Article  PubMed  Google Scholar 

  42. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13:370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019;16:372–85. In this perspective, the authors discuss factors that can preclude durable remissions following CAR T cell therapy, with a primary focus on the resistance mechanisms that underlie disease relapse and potential strategies to overcome these obstacles.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24:1504–6. This study reports genetic mutations in CD19 and loss of heterozygosity at the time of CD19 negative relapse to CAR T cell therapy. The mutations are present in the vast majority of resistant tumor cells and are predicted to lead to a truncated protein with a nonfunctional or absent transmembrane domain and consequently to a loss of surface antigen. This irreversible loss of CD19 advocates for an alternative targeting or combination CAR approach and sets the stage for how novel CAR T cell approaches will evolve with our understanding of resistance mechanisms.

    Article  CAS  PubMed  Google Scholar 

  45. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2017;24:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127:2406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramakrishna S, Highfill SL, Walsh Z, et al. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin Cancer Res. 2019;25:5329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24:20–8.

    Article  CAS  PubMed  Google Scholar 

  50. Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther Oncolytics. 2018;11:127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest. 2016;126:3814–26.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shah NN, Maatman T, Hari P, et al. Multi targeted CAR-T cell therapies for B-cell malignancies. Front Oncol. 2019;9:146.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Weinkove R, George P, Dasyam N, et al. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol. 2019;8:e1049.

    Article  Google Scholar 

  54. Paucek RD, Baltimore D, Li G. The cellular immunotherapy revolution: arming the immune system for precision therapy. Trends Immunol. 2019;40:292–309.

    Article  CAS  PubMed  Google Scholar 

  55. Salas-Mckee J, Kong W, Gladney WL, Jadlowsky JK, Plesa G, Davis MM, et al. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Hum Vaccin Immunother. 2019;15:1126–32.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Achkova D, Pule M. CAR T-cell integration of multiple input signals allows for precise targeting of cancer. Cancer Discov. 2018;8:918–20.

    Article  CAS  PubMed  Google Scholar 

  57. Qasim W. Allogeneic CAR T cell therapies for leukemia. Am J Hematol. 2019;94:S50–4.

    Article  CAS  PubMed  Google Scholar 

  58. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol. 2019;37:1425–34.

    Article  CAS  PubMed  Google Scholar 

  60. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen S, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Di Stasi A, Tey SK, Dotti G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365:1673–83.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kansagra AJ, Frey NV, Bar M, et al. Clinical utilization of chimeric antigen receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)-an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplant. 2019;54:1868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. • Das RK, Vernau L, Grupp SA, et al. Naïve T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov. 2019;9:492–9. This study found that patients with T cells enriched for naive and stem central memory cells expanded well in vitro, but the majority of tumor types showed chemotherapy related depletion of early lineage cells with a corresponding decline in successful ex vivo stimulation response. These data indicate the ex vivo manufacture of CAR T cells may need to be customized based on the nature of T cells available in each disease type and in relation to antecedent chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Taraseviciute A, Broglie L, Phelan R, et al. What is the role of hematopoietic cell transplantation (HCT) for pediatric acute lymphoblastic leukemia (ALL) in the age of chimeric antigen receptor T-cell (CART) therapy? J Pediatr Hematol Oncol. 2019;41:337–44.

    Article  PubMed  Google Scholar 

  65. Pulsipher MA, Carlson C, Langholz B, Wall DA, Schultz KR, Bunin N, et al. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood. 2015;125:3501–8.

  66. Dholaria B, Savani BN, Labopin M, et al. Clinical applications of donor lymphocyte infusion from an HLA-haploidentical donor: consensus recommendations from the acute leukemia working party of the EBMT. Haematologica. 2019;105(1):47–58.

    Article  PubMed  CAS  Google Scholar 

  67. Merli P, Algeri M, Del Bufalo F, et al. Hematopoietic stem cell transplantation in pediatric acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2019;14:94–105.

    Article  PubMed  Google Scholar 

  68. Rocha V, Locatelli F. Searching for alternative hematopoietic stem cell donors for pediatric patients. Bone Marrow Transplant. 2008;41:207–14.

    Article  CAS  PubMed  Google Scholar 

  69. Bertaina A, Roncarolo MG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol. 2019;10:1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin JK, Lerman BJ, Barnes JI, et al Cost effectiveness of chimeric antigen receptor T-cell therapy in relapsed or refractory pediatric B-cell acute lymphoblastic leukemia. J Clin Oncol JCO2018790642, 2018.

  71. Whittington MD, McQueen RB, Ollendorf DA, Kumar VM, Chapman RH, Tice JA, et al. Long-term survival and value of chimeric antigen receptor T-cell therapy for pediatric patients with relapsed or refractory leukemia. JAMA Pediatr. 2018;172:1161–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Laetsch TW, Myers GD, Baruchel A, et al. Patient-reported quality of life after tisagenlecleucel infusion in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukaemia: a global, single-arm, phase 2 trial. Lancet Oncol. 2019;20(12):1710–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bach PB. National coverage analysis of CAR-T therapies - policy, evidence, and payment. N Engl J Med. 2018;379:1396–8.

    Article  PubMed  Google Scholar 

  74. Ittershagen S, Ericson S, Eldjerou L, Shojaee A, Bleickardt E, Patel M, et al. Industry’s giant leap into cellular therapy: catalyzing chimeric antigen receptor T cell (CAR-T) immunotherapy. Curr Hematol Malig Rep. 2019;14:47–55.

    Article  PubMed  Google Scholar 

  75. Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol. 2018;53:164–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by a St. Baldrick’s–Stand Up to Cancer (SU2C) Dream Team translational research grant (SU2C-AACR-DT-27-17). SU2C is a division of the Entertainment Industry Foundation, and research grants are administered by the American Association for Cancer Research, the scientific partner of SU2C. This work was also supported by an NCI (National Cancer Institute) grants U54 CA232568 and the Stanford Child Health Research Institute. S.R. is supported by a Hyundai Hope on Wheels Young Investigator Award and V.B. is an Anne T. and Robert M. Bass Endowed Fellow, supported by the Stanford Child Health Research Institute. K.L.D is the Anne T. and Robert M. Bass Endowed Faculty in Childhood Cancer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentin Barsan, Sneha Ramakrishna or Kara L. Davis.

Ethics declarations

Conflict of Interest

Valentin Barsan has received compensation from Illumina for service as a consultant and participation on a science advisory board and Guardant Health for consultation. Sneha Ramakrishna declares that she has no conflict of interest. Kara L. Davis has received compensation from Novartis for participation on an advisory board.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsan, V., Ramakrishna, S. & Davis, K.L. Immunotherapy for the Treatment of Acute Lymphoblastic Leukemia. Curr Oncol Rep 22, 11 (2020). https://doi.org/10.1007/s11912-020-0875-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-0875-2

Keywords

Navigation