Skip to main content

Advertisement

Log in

Novel Approaches to the Systemic Management of Uveal Melanoma

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Uveal melanoma is a distinct subtype of melanoma characterized by a unique biology and divergent response to immune therapies. In this review, we will discuss our current understanding of the pathophysiology of uveal melanoma, systemic treatment options for advanced disease, and potential future therapeutic directions.

Recent Findings

Although treatment with single-agent checkpoint blockade has been generally disappointing, the results of combined checkpoint blockade are modestly more promising. Several alternative systemic therapeutic approaches have been or are currently being investigated, including two agents that have been taken into registration-intent clinical trials: tebentafusp, a T cell redirecting agent, and IDE196, an oral protein kinase C inhibitor.

Summary

Treatment of advanced uveal melanoma remains challenging, however, encouraging results from novel agents offer hope for improvement in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Aronow ME, Topham AK, Singh AD. Uveal melanoma: 5-year update on Incidence, treatment, and survival (SEER 1973–2013). Ocul Oncol Pathol. 2018;4(3):145–51.

    Article  PubMed  Google Scholar 

  2. Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–5.

    Article  PubMed  Google Scholar 

  3. Virgili G, et al. Incidence of uveal melanoma in Europe. Ophthalmology. 2007;114(12):2309–15.

    Article  PubMed  Google Scholar 

  4. McLaughlin CC, et al. Incidence of noncutaneous melanomas in the U.S. Cancer. 2005;103(5):1000–7.

    Article  PubMed  Google Scholar 

  5. Andreoli MT, Mieler WF, Leiderman YI. Epidemiological trends in uveal melanoma. Br J Ophthalmol. 2015;99(11):1550–3.

    Article  PubMed  Google Scholar 

  6. Damato EM, Damato BE. Detection and time to treatment of uveal melanoma in the United Kingdom: an evaluation of 2,384 patients. Ophthalmology. 2012;119(8):1582–9.

    Article  PubMed  Google Scholar 

  7. Singh AD, Kalyani P, Topham A. Estimating the risk of malignant transformation of a choroidal nevus. Ophthalmology. 2005;112(10):1784–9.

    Article  PubMed  Google Scholar 

  8. Shields CL, et al. Association of ocular and oculodermal melanocytosis with the rate of uveal melanoma metastasis: analysis of 7872 consecutive eyes. JAMA Ophthalmol. 2013;131(8):993–1003.

    Article  PubMed  Google Scholar 

  9. Weis E, et al. The association of cutaneous and iris nevi with uveal melanoma: a meta-analysis. Ophthalmology. 2009;116(3):536–543.e2.

    Article  PubMed  Google Scholar 

  10. Rai K, et al. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet. 2016;89(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  11. Shah CP, et al. Intermittent and chronic ultraviolet light exposure and uveal melanoma: a meta-analysis. Ophthalmology. 2005;112(9):1599–607.

    Article  PubMed  Google Scholar 

  12. Diener-West M, et al. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch Ophthalmol. 2005;123(12):1639–43.

    Article  PubMed  Google Scholar 

  13. Rietschel P, et al. Variates of survival in metastatic uveal melanoma. J Clin Oncol. 2005;23(31):8076–80.

    Article  PubMed  Google Scholar 

  14. Kuk D, et al. Prognosis of mucosal, uveal, acral, nonacral cutaneous, and unknown primary melanoma from the time of first metastasis. Oncologist. 2016;21(7):848–54.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rantala ES, Hernberg M, Kivela TT. Overall survival after treatment for metastatic uveal melanoma: a systematic review and meta-analysis. Melanoma Res. 2019;29(6):561–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Khoja L, et al. Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: an international rare cancers initiative (IRCI) ocular melanoma study. Ann Oncol. 2019;30(8):1370–80.

    Article  CAS  PubMed  Google Scholar 

  17. Shields CL, et al. American Joint Committee on Cancer Classification of Uveal Melanoma (Anatomic Stage) predicts prognosis in 7,731 patients: the 2013 Zimmerman Lecture. Ophthalmology. 2015;122(6):1180–6.

    Article  PubMed  Google Scholar 

  18. Onken MD, et al. Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology. 2012;119(8):1596–603.

    Article  PubMed  Google Scholar 

  19. Vichitvejpaisal P, et al. Genetic analysis of uveal melanoma in 658 patients using the cancer genome atlas classification of uveal melanoma as A, B, C, and D. Ophthalmology. 2019;126(10):1445–53.

    Article  PubMed  Google Scholar 

  20. Robertson AG, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32(2):204–220.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Damato B, Dopierala JA, Coupland SE. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin Cancer Res. 2010;16(24):6083–92.

    Article  CAS  PubMed  Google Scholar 

  22. Ewens KG, et al. Genomic profile of 320 uveal melanoma cases: chromosome 8p-loss and metastatic outcome. Invest Ophthalmol Vis Sci. 2013;54(8):5721–9.

    Article  CAS  PubMed  Google Scholar 

  23. Field MG, et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin Cancer Res. 2016;22(5):1234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.

  25. Amaro A, et al. The biology of uveal melanoma. Cancer Metastasis Rev. 2017;36(1):109–40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shain AH, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019;51(7):1123–30 This study performed DNA sequencing in 35 primary and matched metastatic tumors and demonstrated the order in which driver mutations occur as well as distinct alterations seen in metastatic lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anbunathan H, et al. Integrative copy number analysis of uveal melanoma reveals novel candidate genes involved in tumorigenesis including a tumor suppressor role for PHF10/BAF45a. Clin Cancer Res. 2019;25(16):5156–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Van Raamsdonk CD, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602.

    Article  PubMed  CAS  Google Scholar 

  29. Van Raamsdonk CD, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Johansson P, et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget. 2016;7(4):4624–31.

    Article  PubMed  Google Scholar 

  31. Moore AR, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet. 2016;48(6):675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Slater K, et al. Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma. Cancer Metastasis Rev. 2018;37(2):335–45.

    Article  CAS  PubMed  Google Scholar 

  33. Harbour JW, et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet. 2013;45(2):133–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yavuzyigitoglu S, et al. Uveal melanomas with SF3B1 mutations: a distinct subclass associated with late-onset metastases. Ophthalmology. 2016;123(5):1118–28.

    Article  PubMed  Google Scholar 

  35. Harbour JW, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta MP, et al. Clinical characteristics of uveal melanoma in patients with germline BAP1 mutations. JAMA Ophthalmol. 2015;133(8):881–7.

    Article  PubMed  Google Scholar 

  37. Murali R, Wiesner T, Scolyer RA. Tumours associated with BAP1 mutations. Pathology. 2013;45(2):116–26.

    Article  CAS  PubMed  Google Scholar 

  38. van Essen TH, et al. Prognostic parameters in uveal melanoma and their association with BAP1 expression. Br J Ophthalmol. 2014;98(12):1738–43.

    Article  PubMed  Google Scholar 

  39. Machida YJ, et al. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem. 2009;284(49):34179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Augsburger JJ, Correa ZM, Shaikh AH. Effectiveness of treatments for metastatic uveal melanoma. Am J Ophthalmol. 2009;148(1):119–27.

    Article  PubMed  Google Scholar 

  41. Spagnolo F, et al. Treatment of metastatic uveal melanoma with intravenous fotemustine. Melanoma Res. 2013;23(3):196–8.

    Article  CAS  PubMed  Google Scholar 

  42. Buder K, et al. Systemic treatment of metastatic uveal melanoma: review of literature and future perspectives. Cancer Med. 2013;2(5):674–86.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez JMP, et al. Phase II study evaluating ipilimumab as a single agent in the first-line treatment of adult patients (Pts) with metastatic uveal melanoma (MUM): the GEM-1 trial. J Clin Oncol. 2014;32(15_suppl):9033.

    Article  Google Scholar 

  44. Zimmer L, et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naive patients with metastatic uveal melanoma. PLoS One. 2015;10(3):e0118564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Joshua AM, et al. A phase 2 study of tremelimumab in patients with advanced uveal melanoma. Melanoma Res. 2015;25(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  46. Algazi AP, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016;122(21):3344–53.

    Article  CAS  PubMed  Google Scholar 

  47. Heppt MV, et al. Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibition. Eur J Cancer. 2017;82:56–65.

    Article  CAS  PubMed  Google Scholar 

  48. Rossi E, et al. Pembrolizumab as first-line treatment for metastatic uveal melanoma. Cancer Immunol Immunother. 2019;68(7):1179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pelster M, et al. Phase II study of ipilimumab and nivolumab (ipi/nivo) in metastatic uveal melanoma (UM). J Clin Oncol. 2019;37(15_suppl):9522 These two prospective phase II studies, published in abstract form, demonstrate an improved response to combination checkpoint therapy, with response rates of 12 and 17% respectively.

    Article  Google Scholar 

  50. Rodriguez JP, et al. Phase II multicenter, single arm, open label study of Nivolumab in combination with Ipilimumab in untreated patients with metastatic uveal melanoma. Ann Oncol. 2018;29 (suppl_8):viii442–viii466.

  51. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Larkin J, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article  CAS  PubMed  Google Scholar 

  53. Postow MA, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Heppt MV, et al. Combined immune checkpoint blockade for metastatic uveal melanoma: a retrospective, multi-center study. J Immuno Ther Cancer. 2019;7(1):299.

    Article  Google Scholar 

  55. Shoushtari AN, et al. Efficacy of nivolumab and ipilimumab (Nivo + Ipi) combination in melanoma patients (pts) treated at a single institution on an expanded-access program (EAP). J Clin Oncol. 2016;34(15_suppl):9554.

    Article  Google Scholar 

  56. Jespersen H, et al. Phase II multicenter open label study of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study). Ann Oncol. 2019;30(Supplement_5):v851–v934.

  57. Zheng J, et al. Combined effects of yttrium-90 transarterial radioembolization around immunotherapy for hepatic metastases from uveal melanoma: a preliminary retrospective case series. J Vasc Interv Radiol. 2018;29(10):1369–75.

    Article  PubMed  Google Scholar 

  58. Long GV, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20(8):1083–97.

    Article  CAS  PubMed  Google Scholar 

  59. Rodrigues M, et al. Outlier response to anti-PD1 in uveal melanoma reveals germline MBD4 mutations in hypermutated tumors. Nat Commun. 2018;9(1):1866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rodrigues M, et al. Evolutionary routes in metastatic uveal melanomas depend on MBD4 alterations. Clin Cancer Res. 2019;25(18):5513–24.

    Article  CAS  PubMed  Google Scholar 

  61. Rothermel LD, et al. Identification of an Immunogenic subset of metastatic uveal melanoma. Clin Cancer Res. 2016;22(9):2237–49.

    Article  CAS  PubMed  Google Scholar 

  62. Chandran SS, et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017;18(6):792–802.

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Vries TJ, et al. High expression of immunotherapy candidate proteins gp100, MART-1, tyrosinase and TRP-1 in uveal melanoma. Br J Cancer. 1998;78(9):1156–61.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Middleton MR, et al. Safety, pharmacokinetics and efficacy of IMCgp100, a first-in-class soluble TCR-antiCD3 bispecific T cell redirector with solid tumour activity: results from the FIH study in melanoma. J Clinical Oncol. 2016;34(15_suppl):3016.

  65. Sato T, et al. Redirected T cell lysis in patients with metastatic uveal melanoma with gp100-directed TCR IMCgp100: overall survival findings. J Clin Oncol. 2018;36(15_suppl):9521 This phase I/II study of IMCgp100 in patients with metastatic UM demonstrated an 18% response rate with 65% of patients achieving disease control for > 16 weeks, justifying the investigation of IMCgp100 in an ongoing phase II study.

    Article  Google Scholar 

  66. Schrage R, et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun. 2015;6:10156.

    Article  CAS  PubMed  Google Scholar 

  67. Carvajal RD, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. Jama. 2014;311(23):2397–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Carvajal RD, et al. Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: a phase III, multicenter, randomized trial (SUMIT). J Clin Oncol. 2018;36(12):1232–9 This phase III randomized study assessing the combination of selumetinib and darcarbazine did not demonstrate significant improvement in PFS, in contrast with earlier phase II data.

    Article  CAS  PubMed  Google Scholar 

  69. Nathan P, et al. LBA73SELPAC: a 3 arm randomised phase II study of the MEK inhibitor selumetinib alone or in combination with paclitaxel (PT) in metastatic uveal melanoma (UM). Ann Oncol. 2019;30(Supplement_5):v851–v934.

  70. Ambrosini G, et al. Inhibition of mutant GNAQ signaling in uveal melanoma induces AMPK-dependent autophagic cell death. Mol Cancer Ther. 2013;12(5):768–76.

    Article  CAS  PubMed  Google Scholar 

  71. Shoushtari AN, et al. A randomized phase 2 study of trametinib with or without GSK2141795 in patients with advanced uveal melanoma. J Clin Oncol. 2016;34(15_suppl):9511.

    Article  Google Scholar 

  72. Falchook GS, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Piperno-Neumann S, et al. Phase I dose-escalation study of the protein kinase C (PKC) inhibitor AEB071 in patients with metastatic uveal melanoma. J Clin Oncol. 2014;32(15_suppl):9030.

    Article  Google Scholar 

  74. Kapiteijn E, et al. Abstract CT068: a phase I trial of LXS196, a novel PKC inhibitor for metastatic uveal melanoma. Cancer Res. 2019;79(13 Supplement):CT068 This phase I study of a PKC inhibitor, published in abstract form, demonstrated a partial response in 2 out of 17 patients, however, five out of 17 achieved partial response or stable disease for more than 13 months, offering the potential for durable disease control in a subset of patients.

    Google Scholar 

  75. Yu FX, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell. 2014;25(6):822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu-Chittenden Y, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26(12):1300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feng X, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 2014;25(6):831–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feng X, et al. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the hippo pathway through FAK. Cancer Cell. 2019;35(3):457–472.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoo JH, et al. ARF6 Is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell. 2016;29(6):889–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Musi E, et al. Tris DBA palladium is an orally available inhibitor of GNAQ mutant uveal melanoma in vivo. Oncotarget. 2019;10(43):4424–36.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luke JJ, et al. Randomized phase II trial and tumor mutational spectrum analysis from cabozantinib versus chemotherapy in metastatic uveal melanoma (Alliance A091201). Clin Cancer Res. 2020;26(4):804–811.

  82. Herlihy N, et al. Skewed expression of the genes encoding epigenetic modifiers in high-risk uveal melanoma. Invest Ophthalmol Vis Sci. 2015;56(3):1447–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fu LL, et al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget. 2015;6(8):5501–16.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Filippakopoulos P, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Delmore JE, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Loven J, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153(2):320–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ambrosini G, et al. BRD4-targeted therapy induces Myc-independent cytotoxicity in Gnaq/11-mutatant uveal melanoma cells. Oncotarget. 2015;6(32):33397–409.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chua V, et al. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med. 2019;11(2):e9081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Desjardins L, et al. Randomised study on adjuvant therapy by DTIC in choroidal melanoma. Ophtalmologie. 1998;12(3):168–73.

    Google Scholar 

  90. McLean IW, et al. A randomized study of methanol-extraction residue of bacille Calmette-Guerin as postsurgical adjuvant therapy of uveal melanoma. Am J Ophthalmol. 1990;110(5):522–6.

    Article  CAS  PubMed  Google Scholar 

  91. Lane AM, et al. Adjuvant interferon therapy for patients with uveal melanoma at high risk of metastasis. Ophthalmology. 2009;116(11):2206–12.

    Article  PubMed  Google Scholar 

  92. Richtig E, et al. Safety and efficacy of interferon alfa-2b in the adjuvant treatment of uveal melanoma. Ophthalmologe. 2006;103(6):506–11.

    Article  CAS  PubMed  Google Scholar 

  93. Binkley E, et al. A prospective trial of adjuvant therapy for high-risk uveal melanoma: assessing 5-year survival outcomes. Br J Ophthalmol. 2020;104:524–528.

  94. Fountain E, et al. Adjuvant ipilimumab in high-risk uveal melanoma. Cancers (Basel). 2019;11(2):152.

  95. Mallikarjuna K, et al. Expression of epidermal growth factor receptor, ezrin, hepatocyte growth factor, and c-Met in uveal melanoma: an immunohistochemical study. Curr Eye Res. 2007;32(3):281–90.

    Article  CAS  PubMed  Google Scholar 

  96. All-Ericsson C, et al. c-Kit-dependent growth of uveal melanoma cells: a potential therapeutic target? Invest Ophthalmol Vis Sci. 2004;45(7):2075–82.

    Article  PubMed  Google Scholar 

  97. Surriga O, et al. Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model. Mol Cancer Ther. 2013;12(12):2817–26.

    Article  CAS  PubMed  Google Scholar 

  98. Valsecchi ME, et al. Adjuvant sunitinib in high-risk patients with uveal melanoma: comparison with institutional controls. Ophthalmology. 2018;125(2):210–7.

    Article  PubMed  Google Scholar 

  99. Landreville S, et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res. 2012;18(2):408–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheer Khan.

Ethics declarations

Conflict of Interest

Shaheer Khan does not have any potential conflicts of interest to disclose. Richard D. Carvajal has received compensation from Bristol-Myers Squibb, Castle Biosciences, Compugen, Foundation Medicine, Immunocore, I-Mab, Incyte Corporation, Merck, Roche/Genentech, PureTech Health, Sanofi Genzyme, Sorrento Therapeutics, Aura Biosciences, Chimeron Bio, Rgenix, Amgen, Novartis, Pfizer, AstraZeneca, Bellicum Pharmaceuticals, Plexxikon, Mirati Therapeutics, MacroGenics, Corvus Pharmaceuticals, Bayer, Eli Lilly, and Astellas for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Carvajal, R.D. Novel Approaches to the Systemic Management of Uveal Melanoma. Curr Oncol Rep 22, 104 (2020). https://doi.org/10.1007/s11912-020-00965-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-020-00965-0

Keywords

Navigation