Current Oncology Reports

, 21:104 | Cite as

Upfront Therapies and Downstream Effects: Navigating Late Effects in Childhood Cancer Survivors in the Current Era

  • Rachel PhelanEmail author
  • Hesham Eissa
  • Kerri Becktell
  • Neel Bhatt
  • Matthew Kudek
  • Brandon Nuechterlein
  • Lauren Pommert
  • Ryuma Tanaka
  • K. Scott Baker
Palliative Medicine (A Jatoi, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Palliative Medicine


Purpose of Review

As survival rates of those diagnosed with childhood cancer improve over time, the number of long-term survivors continues to grow. Advances have not only been made in the upfront treatment of childhood cancer, but also in the identification and treatment of late complications that may arise as a result of the chemotherapy, radiotherapy, or surgical interventions required to provide a cure.

Recent Findings

As new therapies emerge that are often more targeted to cancerous cells while sparing healthy tissues, the hope is that cure can be achieved without the same long-term side effects for survivors. However, much is unknown regarding how these novel interventions will impact patients in the years to come.


It is critical that we continue to follow patients treated with new modalities in order to identify and treat the long-term complications that may arise in future childhood cancer survivors.


Childhood cancer Late effects Survivorship Long-term complications Novel therapy 



Dr. Rachel Phelan is a member of the Center for International Blood & Marrow Transplant Research (CIBMTR), a research collaboration between the National Marrow Donor Program/Be The Match and the Medical College of Wisconsin. CIBMTR receives unrestricted financial support from government and corporate entities intended to support broad research and educational missions as listed below. These sources are disclosed for transparency, through the scientific research agenda of CIBMTR and its individual research products and findings are not directly influenced by these funding sources. The CIBMTR is supported primarily by Public Health Service grant/cooperative agreement U24CA076518 with the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI), and the National Institute of Allergy and Infectious Diseases (NIAID); grant/cooperative agreement U24HL138660 with NHLBI and NCI; grant U24CA233032 from the NCI; grants OT3HL147741, R21HL140314, and U01HL128568 from the NHLBI; contract HHSH250201700006C with Health Resources and Services Administration (HRSA); grants N00014-18-1-2888 and N00014-17-1-2850 from the Office of Naval Research; subaward from prime contract award SC1MC31881-01-00 with HRSA; subawards from prime grant awards R01HL131731 and R01HL126589 from NHLBI; subawards from prime grant awards 5P01CA111412, 5R01HL129472, R01CA152108, 1R01HL131731, 1U01AI126612, and 1R01CA231141 from the NIH; and commercial funds from Actinium Pharmaceuticals, Inc.; Adaptive Biotechnologies; Allovir, Inc.; Amgen, Inc.; Anonymous donation to the Medical College of Wisconsin; Anthem, Inc.; Astellas Pharma US; Atara Biotherapeutics, Inc.; BARDA; Be the Match Foundation; bluebird bio, Inc.; Boston Children’s Hospital; Bristol Myers Squibb Co.; Celgene Corp.; Children’s Hospital of Los Angeles; Chimerix, Inc.; City of Hope Medical Center; CSL Behring; CytoSen Therapeutics, Inc.; Daiichi Sankyo Co., Ltd.; Dana Farber Cancer Institute; Enterprise Science and Computing, Inc.; Fred Hutchinson Cancer Research Center; Gamida-Cell, Ltd.; Genzyme; Gilead Sciences, Inc.; GlaxoSmithKline (GSK); HistoGenetics, Inc.; Immucor; Incyte Corporation; Janssen Biotech, Inc.; Janssen Pharmaceuticals, Inc.; Janssen Research & Development, LLC; Janssen Scientific Affairs, LLC; Japan Hematopoietic Cell Transplantation Data Center; Jazz Pharmaceuticals, Inc.; Karius, Inc.; Karyopharm Therapeutics, Inc.; Kite, a Gilead Company; Kyowa Kirin; Magenta Therapeutics; Mayo Clinic and Foundation Rochester; Medac GmbH; Mediware; Memorial Sloan Kettering Cancer Center; Merck & Company, Inc.; Mesoblast; MesoScale Diagnostics, Inc.; Millennium, the Takeda Oncology Co.; Miltenyi Biotec, Inc.; Mundipharma EDO; National Marrow Donor Program; Novartis Oncology; Novartis Pharmaceuticals Corporation; Omeros Corporation; Oncoimmune, Inc.; OptumHealth; Orca Biosystems, Inc.; PCORI; Pfizer, Inc.; Phamacyclics, LLC; PIRCHE AG; Regeneron Pharmaceuticals, Inc.; REGiMMUNE Corp.; Sanofi Genzyme; Seattle Genetics; Shire; Sobi, Inc.; Spectrum Pharmaceuticals, Inc.; St. Baldrick’s Foundation; Swedish Orphan Biovitrum, Inc.; Takeda Oncology; The Medical College of Wisconsin; University of Minnesota; University of Pittsburgh; University of Texas-MD Anderson; University of Wisconsin - Madison; Viracor Eurofins; and Xenikos BV. The views expressed in this article do not reflect the official policy or position of the National Institute of Health, the Department of the Navy, the Department of Defense, Health Resources and Services Administration (HRSA), or any other agency of the US Government.

Compliance with Ethical Standards

Conflict of Interest

Rachel Phelan has received compensation from Orchard Therapeutics for service on an advisory board.

Hesham Eissa, Kerri Becktell, Neel Bhatt, Matthew Kudek, Brandon Nuechterlein, Lauren Pommert, Ryuma Tanaka, and K. Scott Baker declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Hudson MM, Link MP, Simone JV. Milestones in the curability of pediatric cancers. J Clin Oncol. 2014;32(23):2391–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    SEER Cancer Statistics Review (CSR), 1975-2014. Bethesda, MD: National Cancer Institute [Internet] 2014. Available from: Accessed 5 Sept 2019.
  3. 3.
    Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.PubMedCrossRefGoogle Scholar
  4. 4.
    Robison LL, Hudson MM. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer. 2014;14(1):61–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Mertens AC, Liu Q, Neglia JP, Wasilewski K, Leisenring W, Armstrong GT, et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2008;100(19):1368–79.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bhakta N, Liu Q, Ness KK, Baassiri M, Eissa H, Yeo F, et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet. 2017;390(10112):2569–82.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    • Hudson MM, Ehrhardt MJ, Bhakta N, Baassiri M, Eissa H, Chemaitilly W, et al. Approach for classification and severity grading of long-term and late-onset health events among childhood cancer survivors in the St. Jude Lifetime Cohort. Cancer Epidemiol Biomark Prev. 2017;26(5):666–74 This manuscript describes the modified Common Terminology Criteria for Adverse Events (CTCAE) version that has been developed for use in childhood cancer survivorship studies. CrossRefGoogle Scholar
  9. 9.
    • Gibson TM, Mostoufi-Moab S, Stratton KL, Leisenring WM, Barnea D, Chow EJ, et al. Temporal patterns in the risk of chronic health conditions in survivors of childhood cancer diagnosed 1970–99: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2018;19(12):1590–601 This study highlights that the total number of chronic conditions experienced by long-term cancer survivors has decreased with time, but continues to present a substantial burden. PubMedCrossRefGoogle Scholar
  10. 10.
    • Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers. Version 5.0. Monrovia, CA: Children’s Oncology Group; October 2018. 2018 [Available from: The reference frequently utilized by clinicians to determine need for specifc long-term follow-up based on prior exposures.
  11. 11.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRefGoogle Scholar
  12. 12.
    Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33(27):2938–48.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Stary J, Hrusak O. Recent advances in the management of pediatric acute lymphoblastic leukemia. F1000Res. 2016;5:2635.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gamis AS, Alonzo TA, Perentesis JP, Meshinchi S, Committee COGAML. Children’s Oncology Group's 2013 blueprint for research: acute myeloid leukemia. Pediatr Blood Cancer. 2013;60(6):964–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Kizilocak H, Okcu F. Late effects of therapy in childhood acute lymphoblastic leukemia survivors. Turk J Haematol. 2019;36(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mody R, Li S, Dover DC, Sallan S, Leisenring W, Oeffinger KC, et al. Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Blood. 2008;111(12):5515–23.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pui CH, Cheng C, Leung W, Rai SN, Rivera GK, Sandlund JT, et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med. 2003;349(7):640–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Borgmann A, Zinn C, Hartmann R, Herold R, Kaatsch P, Escherich G, et al. Secondary malignant neoplasms after intensive treatment of relapsed acute lymphoblastic leukaemia in childhood. Eur J Cancer. 2008;44(2):257–68.PubMedCrossRefGoogle Scholar
  19. 19.
    Krull KR, Okcu MF, Potter B, Jain N, Dreyer Z, Kamdar K, et al. Screening for neurocognitive impairment in pediatric cancer long-term survivors. J Clin Oncol. 2008;26(25):4138–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Tay CG, Lee VWM, Ong LC, Goh KJ, Ariffin H, Fong CY. Vincristine-induced peripheral neuropathy in survivors of childhood acute lymphoblastic leukaemia. Pediatr Blood Cancer. 2017;64(8).CrossRefGoogle Scholar
  21. 21.
    Kremer LC, van Dalen EC, Offringa M, Voute PA. Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann Oncol. 2002;13(4):503–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Greaves P, Sarker SJ, Chowdhury K, Johnson R, Matthews J, Matthews R, et al. Fertility and sexual function in long-term survivors of haematological malignancy: using patient-reported outcome measures to assess a neglected area of need in the late effects clinic. Br J Haematol. 2014;164(4):526–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Howard SC, Pui CH. Endocrine complications in pediatric patients with acute lymphoblastic leukemia. Blood Rev. 2002;16(4):225–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Gurney JG, Kaste SC, Liu W, Srivastava DK, Chemaitilly W, Ness KK, et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2014;61(7):1270–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Riccio I, Pota E, Marcarelli M, Affinita MC, Di Pinto D, Indolfi C, et al. Osteonecrosis as a complication in pediatric patients with acute lymphoblastic leukemia. Pediatr Med Chir. 2016;38(3):118.PubMedCrossRefGoogle Scholar
  26. 26.
    Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol. 2009;27(31):5175–81.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Rollig C, Serve H, Huttmann A, Noppeney R, Muller-Tidow C, Krug U, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16(16):1691–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Chow EJ, Antal Z, Constine LS, Gardner R, Wallace WH, Weil BR, et al. New agents, emerging late effects, and the development of precision survivorship. J Clin Oncol. 2018;36(21):2231–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.CrossRefGoogle Scholar
  30. 30.
    Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pollard JA, Loken M, Gerbing RB, Raimondi SC, Hirsch BA, Aplenc R, et al. CD33 expression and its association with gemtuzumab ozogamicin response: results from the randomized phase III Children's Oncology Group trial AAML0531. J Clin Oncol. 2016;34(7):747–55.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    von Stackelberg A, Locatelli F, Zugmaier G, Handgretinger R, Trippett TM, Rizzari C, et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol. 2016;34(36):4381–9.CrossRefGoogle Scholar
  34. 34.
    Gore L, Locatelli F, Zugmaier G, Handgretinger R, O'Brien MM, Bader P, et al. Survival after blinatumomab treatment in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Cancer J. 2018;8(9):80.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bajzar L, Chan AK, Massicotte MP, Mitchell LG. Thrombosis in children with malignancy. Curr Opin Pediatr. 2006;18(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–31.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    • Maude S, Barrett DM. Current status of chimeric antigen receptor therapy for haematological malignancies. Br J Haematol. 2016;172(1):11–22 This manuscript provides an update on the current status of CART immunotherapy. CART immunotherapy is one of the novel treatments garnering attention and there have been increasing numbers of clinical trials for patients with different types of malignancies. PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Howlader N NA, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER cancer statistics review, 1975–20.13, National Cancer Institute. Bethesda., based on November 2015 SEER data submission.
  40. 40.
    Armstrong GT, Liu Q, Yasui Y, Neglia JP, Leisenring W, Robison LL, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27(14):2328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    • Armstrong GT, Chen Y, Yasui Y, Leisenring W, Gibson TM, Mertens AC, et al. Reduction in late mortality among 5-year survivors of childhood cancer. N Engl J Med. 2016;374(9):833–42 This study found that over time, the incidence of life-threatening late effects has continued to decrease, likely related to an effort to decrease exposures to certain chemotherapy and radiation when feasible. PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Linet MS, Ries LA, Smith MA, Tarone RE, Devesa SS. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst. 1999;91(12):1051–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Loeb DM, Thornton K, Shokek O. Pediatric soft tissue sarcomas. Surg Clin North Am. 2008;88(3):615–27 vii.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Heare T, Hensley MA, Dell’Orfano S. Bone tumors: osteosarcoma and Ewing’s sarcoma. Curr Opin Pediatr. 2009;21(3):365–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Gerber LH, Hoffman K, Chaudhry U, Augustine E, Parks R, Bernad M, et al. Functional outcomes and life satisfaction in long-term survivors of pediatric sarcomas. Arch Phys Med Rehabil. 2006;87(12):1611–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Nagarajan R, Clohisy DR, Neglia JP, Yasui Y, Mitby PA, Sklar C, et al. Function and quality-of-life of survivors of pelvic and lower extremity osteosarcoma and Ewing’s sarcoma: the Childhood Cancer Survivor Study. Br J Cancer. 2004;91(11):1858–65.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Raney RB, Asmar L, Vassilopoulou-Sellin R, Klein MJ, Donaldson SS, Green J, et al. Late complications of therapy in 213 children with localized, nonorbital soft-tissue sarcoma of the head and neck: a descriptive report from the Intergroup Rhabdomyosarcoma Studies (IRS)-II and - III. IRS Group of the Children’s Cancer Group and the Pediatric Oncology Group. Med Pediatr Oncol. 1999;33(4):362–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Paulino AC. Late effects of radiotherapy for pediatric extremity sarcomas. Int J Radiat Oncol Biol Phys. 2004;60(1):265–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Bolling T, Willich N, Ernst I. Late effects of abdominal irradiation in children: a review of the literature. Anticancer Res. 2010;30(1):227–31.PubMedGoogle Scholar
  50. 50.
    Applebaum MA, Henderson TO, Lee SM, Pinto N, Volchenboum SL, Cohn SL. Second malignancies in patients with neuroblastoma: the effects of risk-based therapy. Pediatr Blood Cancer. 2015;62(1):128–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Friedman DN, Henderson TO. Late effects and survivorship issues in patients with neuroblastoma. Children (Basel). 2018;5(8).PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Clement SC, van Eck-Smit BL, van Trotsenburg AS, Kremer LC, Tytgat GA, van Santen HM. Long-term follow-up of the thyroid gland after treatment with 131I-Metaiodobenzylguanidine in children with neuroblastoma: importance of continuous surveillance. Pediatr Blood Cancer. 2013;60(11):1833–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Armstrong AE, Danner-Koptik K, Golden S, Schneiderman J, Kletzel M, Reichek J, et al. Late effects in pediatric high-risk neuroblastoma survivors after intensive induction chemotherapy followed by myeloablative consolidation chemotherapy and triple autologous stem cell transplants. J Pediatr Hematol Oncol. 2018;40(1):31–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Perwein T, Lackner H, Sovinz P, Benesch M, Schmidt S, Schwinger W, et al. Survival and late effects in children with stage 4 neuroblastoma. Pediatr Blood Cancer. 2011;57(4):629–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Clement SC, Kraal KC, van Eck-Smit BL, van den Bos C, Kremer LC, Tytgat GA, et al. Primary ovarian insufficiency in children after treatment with 131I-metaiodobenzylguanidine for neuroblastoma: report of the first two cases. J Clin Endocrinol Metab. 2014;99(1):E112–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Elzembely MM, Dahlberg AE, Pinto N, Leger KJ, Chow EJ, Park JR, et al. Late effects in high-risk neuroblastoma survivors treated with high-dose chemotherapy and stem cell rescue. Pediatr Blood Cancer. 2019;66(1):e27421.PubMedCrossRefGoogle Scholar
  57. 57.
    Hobbie WL, Mostoufi SM, Carlson CA, Gruccio D, Ginsberg JP. Prevalence of advanced bone age in a cohort of patients who received cis-retinoic acid for high-risk neuroblastoma. Pediatr Blood Cancer. 2011;56(3):474–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Meacham LR, Sklar CA, Li S, Liu Q, Gimpel N, Yasui Y, et al. Diabetes mellitus in long-term survivors of childhood cancer. Increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch Intern Med. 2009;169(15):1381–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Stone A, Novetsky Friedman D, Worgall S, Kushner BH, Wolden S, Modak S, et al. Long-term pulmonary outcomes in pediatric survivors of high-risk neuroblastoma. J Pediatr Hematol Oncol. 2017;39(7):547–54.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Adams M, Traunecker H, Doull I, Cox R. Bronchiectasis following treatment for high-risk neuroblastoma: a case series. Pediatr Blood Cancer. 2017;64(10).CrossRefGoogle Scholar
  61. 61.
    Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Huang TT, Chen Y, Dietz AC, Yasui Y, Donaldson SS, Stokes DC, et al. Pulmonary outcomes in survivors of childhood central nervous system malignancies: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2014;61(2):319–25.PubMedCrossRefGoogle Scholar
  63. 63.
    Lawson SA, Horne VE, Golekoh MC, Hornung L, Burns KC, Fouladi M, et al. Hypothalamic-pituitary function following childhood brain tumors: analysis of prospective annual endocrine screening. Pediatr Blood Cancer. 2019;66(5):e27631.PubMedCrossRefGoogle Scholar
  64. 64.
    Brinkman TM, Ness KK, Li Z, Huang IC, Krull KR, Gajjar A, et al. Attainment of functional and social Independence in adult survivors of pediatric CNS tumors: a report from the St Jude Lifetime Cohort Study. J Clin Oncol. 2018;36(27):2762–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Brinkman TM, Krasin MJ, Liu W, Armstrong GT, Ojha RP, Sadighi ZS, et al. Long-term neurocognitive functioning and social attainment in adult survivors of pediatric CNS tumors: results from the St Jude Lifetime Cohort Study. J Clin Oncol. 2016;34(12):1358–67.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schreiber JE, Palmer SL, Conklin HM, Mabbott DJ, Swain MA, Bonner MJ, et al. Posterior fossa syndrome and long-term neuropsychological outcomes among children treated for medulloblastoma on a multi-institutional, prospective study. Neuro-Oncology. 2017;19(12):1673–82.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Willard VW, Berlin KS, Conklin HM, Merchant TE. Trajectories of psychosocial and cognitive functioning in pediatric patients with brain tumors treated with radiation therapy. Neuro-Oncology. 2019;21(5):678–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Korshunov A, Sahm F, Stichel D, Schrimpf D, Ryzhova M, Zheludkova O, et al. Molecular characterization of medulloblastomas with extensive nodularity (MBEN). Acta Neuropathol. 2018;136(2):303–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Robinson GW, Rudneva VA, Buchhalter I, Billups CA, Waszak SM, Smith KS, et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 2018;19(6):768–84.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Moxon-Emre I, Taylor MD, Bouffet E, Hardy K, Campen CJ, Malkin D, et al. Intellectual outcome in molecular subgroups of medulloblastoma. J Clin Oncol. 2016;34(34):4161–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Vatner RE, Niemierko A, Misra M, Weyman EA, Goebel CP, Ebb DH, et al. Endocrine deficiency as a function of radiation dose to the hypothalamus and pituitary in pediatric and young adult patients with brain tumors. J Clin Oncol. 2018;36(28):2854–62.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gurney JG, Bass JK, Onar-Thomas A, Huang J, Chintagumpala M, Bouffet E, et al. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro-Oncology. 2014;16(6):848–55.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378(25):2376–85.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R, et al. Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol. 2017;35(25):2934–41.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro-Oncology. 2017;19(8):1135–44.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Heinzerling L, Eigentler TK, Fluck M, Hassel JC, Heller-Schenck D, Leipe J, et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open. 2019;4(3):e000491.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Armenian SH, Sun CL, Kawashima T, Arora M, Leisenring W, Sklar CA, et al. Long-term health-related outcomes in survivors of childhood cancer treated with HSCT versus conventional therapy: a report from the Bone Marrow Transplant Survivor Study (BMTSS) and Childhood Cancer Survivor Study (CCSS). Blood. 2011;118(5):1413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sun CL, Kersey JH, Francisco L, Armenian SH, Baker KS, Weisdorf DJ, et al. Burden of morbidity in 10+ year survivors of hematopoietic cell transplantation: report from the bone marrow transplantation survivor study. Biol Blood Marrow Transplant. 2013;19(7):1073–80.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chow EJ, Wong K, Lee SJ, Cushing-Haugen KL, Flowers ME, Friedman DL, et al. Late cardiovascular complications after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(6):794–800.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Eissa HM, Lu L, Baassiri M, Bhakta N, Ehrhardt MJ, Triplett BM, et al. Chronic disease burden and frailty in survivors of childhood HSCT: a report from the St. Jude Lifetime Cohort Study. Blood Adv. 2017;1(24):2243–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Baker KS, Leisenring WM, Goodman PJ, Ermoian RP, Flowers ME, Schoch G, et al. Total body irradiation dose and risk of subsequent neoplasms following allogeneic hematopoietic cell transplantation. Blood. 2019;133(26):2790–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Dvorak CC, Gracia CR, Sanders JE, Cheng EY, Baker KS, Pulsipher MA, et al. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, & reproductive risks. Biol Blood Marrow Transplant. 2011;17(12):1725–38.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sanders JE, Hoffmeister PA, Woolfrey AE, Carpenter PA, Storer BE, Storb RF, et al. Thyroid function following hematopoietic cell transplantation in children: 30 years’ experience. Blood. 2009;113(2):306–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hoehn ME, Calderwood J, Gannon E, Cook B, Rochester R, Hartford C, et al. Ocular complications in a young pediatric population following bone marrow transplantation. J AAPOS. 2018;22(2):102–6 e1.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gurney JG, Ness KK, Rosenthal J, Forman SJ, Bhatia S, Baker KS. Visual, auditory, sensory, and motor impairments in long-term survivors of hematopoietic stem cell transplantation performed in childhood: results from the Bone Marrow Transplant Survivor study. Cancer. 2006;106(6):1402–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Bhatia S, Francisco L, Carter A, Sun CL, Baker KS, Gurney JG, et al. Late mortality after allogeneic hematopoietic cell transplantation and functional status of long-term survivors: report from the Bone Marrow Transplant Survivor Study. Blood. 2007;110(10):3784–92.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Marras TK, Chan CK, Lipton JH, Messner HA, Szalai JP, Laupacis A. Long-term pulmonary function abnormalities and survival after allogeneic marrow transplantation. Bone Marrow Transplant. 2004;33(5):509–17.PubMedCrossRefGoogle Scholar
  88. 88.
    Inaba H, Yang J, Pan J, Stokes DC, Krasin MJ, Srinivasan A, et al. Pulmonary dysfunction in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem cell transplantation. Cancer. 2010;116(8):2020–30.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gower WA, Collaco JM, Mogayzel PJ Jr. Pulmonary dysfunction in pediatric hematopoietic stem cell transplant patients: non-infectious and long-term complications. Pediatr Blood Cancer. 2007;49(3):225–33.PubMedCrossRefGoogle Scholar
  90. 90.
    Buchbinder D, Nugent DJ, Brazauskas R, Wang Z, Aljurf MD, Cairo MS, et al. Late effects in hematopoietic cell transplant recipients with acquired severe aplastic anemia: a report from the late effects working committee of the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2012;18(12):1776–84.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rachel Phelan
    • 1
    Email author
  • Hesham Eissa
    • 2
  • Kerri Becktell
    • 1
  • Neel Bhatt
    • 3
  • Matthew Kudek
    • 1
  • Brandon Nuechterlein
    • 2
  • Lauren Pommert
    • 1
  • Ryuma Tanaka
    • 1
  • K. Scott Baker
    • 3
  1. 1.Children’s Hospital of Wisconsin/Medical College of WisconsinMilwaukeeUSA
  2. 2.The University of Colorado, School of Medicine, Blood and Marrow Transplant and Cellular Therapeutics, Center for Cancer and Blood DisordersChildren’s Hospital ColoradoAuroraUSA
  3. 3.Seattle Children’s Hospital/University of WashingtonSeattleUSA

Personalised recommendations