Advertisement

Targeted Therapies for the Treatment of Glioblastoma in Adults

  • Ding Fang Chuang
  • Xuling LinEmail author
Neuro-oncology (Y Umemura, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-oncology

Abstract

Purpose of Review

Targeted therapies are part of biomarker-driven strategies that exploit actionable molecular targets and have gained traction following survival benefits demonstrated in various systemic malignancies. In glioblastoma, where therapeutic options remain scarce and prognosis poor, targeted therapies offer an attractive treatment alternative and are actively examined in clinical trials. In this review, we summarize the targeted therapies, including traditional small molecule inhibitors and monoclonal antibodies as well as immunotherapeutic approaches that are examined in clinical trials, and discuss the challenges of using them for the treatment of glioblastoma.

Recent Findings

Despite initial speculations, phase II/III trials of targeted therapies in adult patients with glioblastoma have largely failed. Recent trials have focused on improving patient stratification, drug-tissue penetration, and target and compensatory pathway inhibition to optimize treatment response. In contrast to traditional small molecule and monoclonal antibody therapies, cancer immunotherapy may target specific molecular or immune checkpoint target(s) to trigger immune responses against glioblastoma. Early phase clinical trials of immunotherapy have shown encouraging results, and larger randomized trials are ongoing.

Summary

Targeted therapies are being actively studied in clinical trials. Patients with glioblastoma should be prioritized for clinical trial participation.

Keywords

Glioblastoma Immunotherapy Molecular targeted therapy Receptor protein-tyrosine kinase 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncology. 2013;15(Suppl 2):ii1–56.  https://doi.org/10.1093/neuonc/not151.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.  https://doi.org/10.1038/nature07385.CrossRefGoogle Scholar
  3. 3.
    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.  https://doi.org/10.1016/j.cell.2013.09.034.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer. 2001;8(3):161–73.CrossRefGoogle Scholar
  5. 5.
    Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anti-Cancer Drugs. 2005;16(8):797–803.CrossRefGoogle Scholar
  6. 6.
    Matlashewski G, Lamb P, Pim D, Peacock J, Crawford L, Benchimol S. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984;3(13):3257–62.CrossRefGoogle Scholar
  7. 7.
    Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2(2):103–12.CrossRefGoogle Scholar
  8. 8.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.  https://doi.org/10.1056/NEJMoa1003466.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.  https://doi.org/10.1056/NEJMoa1507643.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.  https://doi.org/10.1056/NEJMoa1510665.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.  https://doi.org/10.1056/NEJMoa1411087.CrossRefPubMedGoogle Scholar
  12. 12.
    Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 2003;3(7):569–81.  https://doi.org/10.1038/nri1130.CrossRefPubMedGoogle Scholar
  13. 13.
    Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992;13(12):507–12.  https://doi.org/10.1016/0167-5699(92)90027-5.CrossRefPubMedGoogle Scholar
  14. 14.••
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.  https://doi.org/10.1038/nature14432. This is an important paper which described the discovery of a central nervous system (CNS) lymphatic system and shed light to previous misconception that the CNS was an immune-privileged site. CrossRefGoogle Scholar
  15. 15.
    Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol. 2007;28(1):12–8.  https://doi.org/10.1016/j.it.2006.11.004.CrossRefPubMedGoogle Scholar
  16. 16.
    Fan QW, Weiss WA. Targeting the RTK-PI3K-mTOR axis in malignant glioma: overcoming resistance. Curr Top Microbiol Immunol. 2010;347:279–96.  https://doi.org/10.1007/82_2010_67.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL, et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2012;2(5):458–71.  https://doi.org/10.1158/2159-8290.CD-11-0284.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol. 2004;22(1):133–42.  https://doi.org/10.1200/JCO.2004.08.110.CrossRefPubMedGoogle Scholar
  19. 19.
    Franceschi E, Cavallo G, Lonardi S, Magrini E, Tosoni A, Grosso D, et al. Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer. 2007;96(7):1047–51.  https://doi.org/10.1038/sj.bjc.6603669.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol. 2009;27(8):1268–74.  https://doi.org/10.1200/JCO.2008.17.5984.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MC, Delorenzi M, et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib--a phase II trial. Mol Cancer Ther. 2011;10(6):1102–12.  https://doi.org/10.1158/1535-7163.MCT-11-0048.CrossRefPubMedGoogle Scholar
  22. 22.
    Reardon DA, Nabors LB, Mason WP, Perry JR, Shapiro W, Kavan P, et al. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro-Oncology. 2015;17(3):430–9.  https://doi.org/10.1093/neuonc/nou160.CrossRefPubMedGoogle Scholar
  23. 23.
    Sepulveda-Sanchez JM, Vaz MA, Balana C, Gil-Gil M, Reynes G, Gallego O, et al. Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro-Oncology. 2017;19(11):1522–31.  https://doi.org/10.1093/neuonc/nox105.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF, et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol. 2009;20(9):1596–603.  https://doi.org/10.1093/annonc/mdp032.CrossRefPubMedGoogle Scholar
  25. 25.
    Chakraborty S, Filippi CG, Wong T, Ray A, Fralin S, Tsiouris AJ, et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neuro-Oncol. 2016;128(3):405–15.  https://doi.org/10.1007/s11060-016-2099-8.CrossRefGoogle Scholar
  26. 26.
    O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004.  https://doi.org/10.1056/NEJMoa022457.CrossRefPubMedGoogle Scholar
  27. 27.
    Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2015;373(16):1582.  https://doi.org/10.1056/NEJMx150036.CrossRefGoogle Scholar
  28. 28.
    Wu YL, Lu S, Lu Y, Zhou J, Shi YK, Sriuranpong V, et al. Results of PROFILE 1029, a phase III comparison of first-line crizotinib versus chemotherapy in east Asian patients with ALK-positive advanced non-small cell lung cancer. J Thorac Oncol. 2018;13(10):1539–48.  https://doi.org/10.1016/j.jtho.2018.06.012.CrossRefPubMedGoogle Scholar
  29. 29.
    Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012;337(6099):1231–5.  https://doi.org/10.1126/science.1220834.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.•
    Lasorella A, Sanson M, Iavarone A. FGFR-TACC gene fusions in human glioma. Neuro-Oncology. 2017;19(4):475–83.  https://doi.org/10.1093/neuonc/now240. This article described the discovery and pathogenesis of FGFR-TACC oncogenic fusion in human gliomas, and provided the basis for FGFR inhibitors in the treatment of FGFR-TACC-positive tumours. CrossRefPubMedGoogle Scholar
  31. 31.
    Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, et al. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest. 2013;123(2):855–65.  https://doi.org/10.1172/JCI67144.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tabernero J, Bahleda R, Dienstmann R, Infante JR, Mita A, Italiano A, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2015;33(30):3401–8.  https://doi.org/10.1200/JCO.2014.60.7341.CrossRefPubMedGoogle Scholar
  33. 33.
    Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology. 2005;7(2):134–53.  https://doi.org/10.1215/S1152851704001115.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.  https://doi.org/10.1200/JCO.2008.16.3055.CrossRefPubMedGoogle Scholar
  35. 35.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.  https://doi.org/10.1200/JCO.2008.19.8721.CrossRefPubMedGoogle Scholar
  36. 36.
    Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.  https://doi.org/10.1056/NEJMoa1308345.CrossRefPubMedGoogle Scholar
  37. 37.
    Gerstner ER, Eichler AF, Plotkin SR, Drappatz J, Doyle CL, Xu L, et al. Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide. J Neuro-Oncol. 2011;103(2):325–32.  https://doi.org/10.1007/s11060-010-0390-7.CrossRefGoogle Scholar
  38. 38.
    Kalpathy-Cramer J, Chandra V, Da X, Ou Y, Emblem KE, Muzikansky A, et al. Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma. J Neuro-Oncol. 2017;131(3):603–10.  https://doi.org/10.1007/s11060-016-2332-5.CrossRefGoogle Scholar
  39. 39.
    Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol. 2013;31(26):3212–8.  https://doi.org/10.1200/JCO.2012.47.2464.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kreisl TN, McNeill KA, Sul J, Iwamoto FM, Shih J, Fine HA. A phase I/II trial of vandetanib for patients with recurrent malignant glioma. Neuro-Oncology. 2012;14(12):1519–26.  https://doi.org/10.1093/neuonc/nos265.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lassman AB, Pugh SL, Gilbert MR, Aldape KD, Geinoz S, Beumer JH, et al. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro-Oncology. 2015;17(7):992–8.  https://doi.org/10.1093/neuonc/nov011.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Neyns B, Sadones J, Chaskis C, Dujardin M, Everaert H, Lv S, et al. Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neuro-Oncol. 2011;103(3):491–501.  https://doi.org/10.1007/s11060-010-0402-7.CrossRefGoogle Scholar
  43. 43.
    Muhic A, Poulsen HS, Sorensen M, Grunnet K, Lassen U. Phase II open-label study of nintedanib in patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2013;111(2):205–12.  https://doi.org/10.1007/s11060-012-1009-y.CrossRefGoogle Scholar
  44. 44.
    Norden AD, Schiff D, Ahluwalia MS, Lesser GJ, Nayak L, Lee EQ, et al. Phase II trial of triple tyrosine kinase receptor inhibitor nintedanib in recurrent high-grade gliomas. J Neuro-Oncol. 2015;121(2):297–302.  https://doi.org/10.1007/s11060-014-1631-y.CrossRefGoogle Scholar
  45. 45.
    Schafer N, Gielen GH, Kebir S, Wieland A, Till A, Mack F, et al. Phase I trial of dovitinib (TKI258) in recurrent glioblastoma. J Cancer Res Clin Oncol. 2016;142(7):1581–9.  https://doi.org/10.1007/s00432-016-2161-0.CrossRefPubMedGoogle Scholar
  46. 46.
    Pitz MW, Eisenhauer EA, MacNeil MV, Thiessen B, Easaw JC, Macdonald DR, et al. Phase II study of PX-866 in recurrent glioblastoma. Neuro-Oncology. 2015;17(9):1270–4.  https://doi.org/10.1093/neuonc/nou365.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Investig New Drugs. 2005;23(4):357–61.  https://doi.org/10.1007/s10637-005-1444-0.CrossRefGoogle Scholar
  48. 48.
    Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Friedman AH, Herndon JE 2nd, et al. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J Neuro-Oncol. 2010;96(2):219–30.  https://doi.org/10.1007/s11060-009-9950-0.CrossRefGoogle Scholar
  49. 49.
    Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, et al. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro-Oncology. 2015;17(9):1261–9.  https://doi.org/10.1093/neuonc/nou328.CrossRefPubMedGoogle Scholar
  50. 50.
    Wen PY, Omuro A, Ahluwalia MS, Fathallah-Shaykh HM, Mohile N, Lager JJ, et al. Phase I dose-escalation study of the PI3K/mTOR inhibitor voxtalisib (SAR245409, XL765) plus temozolomide with or without radiotherapy in patients with high-grade glioma. Neuro-Oncology. 2015;17(9):1275–83.  https://doi.org/10.1093/neuonc/nov083.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wu S, Wang S, Gao F, Li L, Zheng S, Yung WKA, et al. Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro-Oncology. 2018;20(1):78–91.  https://doi.org/10.1093/neuonc/nox128.CrossRefPubMedGoogle Scholar
  52. 52.
    Sanai N, Li J, Boerner J, Stark K, Wu J, Kim S, et al. Phase 0 trial of AZD1775 in first-recurrence glioblastoma patients. Clin Cancer Res. 2018;24(16):3820–8.  https://doi.org/10.1158/1078-0432.CCR-17-3348.CrossRefPubMedGoogle Scholar
  53. 53.
    Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6(3):e17948.  https://doi.org/10.1371/journal.pone.0017948.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chamberlain MC. Salvage therapy with BRAF inhibitors for recurrent pleomorphic xanthoastrocytoma: a retrospective case series. J Neuro-Oncol. 2013;114(2):237–40.  https://doi.org/10.1007/s11060-013-1176-5.CrossRefGoogle Scholar
  55. 55.••
    Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726–36.  https://doi.org/10.1056/NEJMoa1502309. This is a phase II “basket” trial of vemurafenib in BRAF V600 mutation positive non-melanoma cancers; it demonstrated anecdoctal responses in a variety of BRAF V600E mutation positive tumors including gliomas. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hainsworth JD, Ervin T, Friedman E, Priego V, Murphy PB, Clark BL, et al. Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer. 2010;116(15):3663–9.  https://doi.org/10.1002/cncr.25275.CrossRefPubMedGoogle Scholar
  57. 57.
    Reardon DA, Vredenburgh JJ, Desjardins A, Peters K, Gururangan S, Sampson JH, et al. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J Neuro-Oncol. 2011;101(1):57–66.  https://doi.org/10.1007/s11060-010-0217-6.CrossRefGoogle Scholar
  58. 58.
    Lee EQ, Kuhn J, Lamborn KR, Abrey L, DeAngelis LM, Lieberman F, et al. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02. Neuro-Oncology. 2012;14(12):1511–8.  https://doi.org/10.1093/neuonc/nos264.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Galanis E, Anderson SK, Lafky JM, Uhm JH, Giannini C, Kumar SK, et al. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): a north central cancer treatment group trial. Clin Cancer Res. 2013;19(17):4816–23.  https://doi.org/10.1158/1078-0432.CCR-13-0708.CrossRefPubMedGoogle Scholar
  60. 60.
    Lang FF, Bruner JM, Fuller GN, Aldape K, Prados MD, Chang S, et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol. 2003;21(13):2508–18.  https://doi.org/10.1200/JCO.2003.21.13.2508.CrossRefPubMedGoogle Scholar
  61. 61.
    Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993;53(12):2736–9.PubMedGoogle Scholar
  62. 62.
    Costa B, Bendinelli S, Gabelloni P, Da Pozzo E, Daniele S, Scatena F, et al. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor. PLoS One. 2013;8(8):e72281.  https://doi.org/10.1371/journal.pone.0072281.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Verreault M, Schmitt C, Goldwirt L, Pelton K, Haidar S, Levasseur C, et al. Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2-amplified and TP53 wild-type glioblastomas. Clin Cancer Res. 2016;22(5):1185–96.  https://doi.org/10.1158/1078-0432.CCR-15-1015.CrossRefPubMedGoogle Scholar
  64. 64.
    Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, et al. The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther. 2015;14(3):649–58.  https://doi.org/10.1158/1535-7163.MCT-14-0710.CrossRefPubMedGoogle Scholar
  65. 65.
    Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 2010;70(8):3228–38.  https://doi.org/10.1158/0008-5472.CAN-09-4559.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13(5):345.  https://doi.org/10.1007/s11910-013-0345-4.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.  https://doi.org/10.1056/NEJMoa0808710.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Popovici-Muller J, Lemieux RM, Artin E, Saunders JO, Salituro FG, Travins J, et al. Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med Chem Lett. 2018;9(4):300–5.  https://doi.org/10.1021/acsmedchemlett.7b00421.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Daoud EV, Rajaram V, Cai C, Oberle RJ, Martin GR, Raisanen JM, et al. Adult brainstem gliomas with H3K27M mutation: radiology, pathology, and prognosis. J Neuropathol Exp Neurol. 2018;77(4):302–11.  https://doi.org/10.1093/jnen/nly006.CrossRefPubMedGoogle Scholar
  70. 70.
    Ralff MD, Lulla AR, Wagner J, El-Deiry WS. ONC201: a new treatment option being tested clinically for recurrent glioblastoma. Transl Cancer Res. 2017;6(Suppl 7):S1239–S43.  https://doi.org/10.21037/tcr.2017.10.03.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology. 2015;17(6):854–61.  https://doi.org/10.1093/neuonc/nou348.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.  https://doi.org/10.1200/JCO.2010.28.6963.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Reardon DA, Schuster J, Tran DD, Fink KL, Nabors LB, Li G, et al. ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. ASCO Meeting Abstracts. 2015;33(15_suppl):2009.Google Scholar
  74. 74.
    Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.  https://doi.org/10.1016/S1470-2045(17)30517-X.CrossRefPubMedGoogle Scholar
  75. 75.
    Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7.  https://doi.org/10.1038/nature13387.CrossRefPubMedGoogle Scholar
  76. 76.
    Menssen HD, Bertelmann E, Bartelt S, Schmidt RA, Pecher G, Schramm K, et al. Wilms' tumor gene (WT1) expression in lung cancer, colon cancer and glioblastoma cell lines compared to freshly isolated tumor specimens. J Cancer Res Clin Oncol. 2000;126(4):226–32.CrossRefGoogle Scholar
  77. 77.
    Rauscher J, Beschorner R, Gierke M, Bisdas S, Braun C, Ebner FH, et al. WT1 expression increases with malignancy and indicates unfavourable outcome in astrocytoma. J Clin Pathol. 2014;67(7):556–61.  https://doi.org/10.1136/jclinpath-2013-202114.CrossRefPubMedGoogle Scholar
  78. 78.
    Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg. 2008;108(5):963–71.  https://doi.org/10.3171/JNS/2008/108/5/0963.CrossRefPubMedGoogle Scholar
  79. 79.
    Hashimoto N, Tsuboi A, Kagawa N, Chiba Y, Izumoto S, Kinoshita M, et al. Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: safety and impact on immunological response. Cancer Immunol Immunother. 2015;64(6):707–16.  https://doi.org/10.1007/s00262-015-1674-8.CrossRefPubMedGoogle Scholar
  80. 80.
    Nestle FO, Banchereau J, Hart D. Dendritic cells: on the move from bench to bedside. Nat Med. 2001;7(7):761–5.  https://doi.org/10.1038/89863.CrossRefPubMedGoogle Scholar
  81. 81.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.  https://doi.org/10.1038/32588.CrossRefPubMedGoogle Scholar
  82. 82.
    Sakai K, Shimodaira S, Maejima S, Udagawa N, Sano K, Higuchi Y, et al. Dendritic cell-based immunotherapy targeting Wilms’ tumor 1 in patients with recurrent malignant glioma. J Neurosurg. 2015;123(4):989–97.  https://doi.org/10.3171/2015.1.JNS141554.CrossRefPubMedGoogle Scholar
  83. 83.
    Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, et al. A cancer research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22(19):4776–85.  https://doi.org/10.1158/1078-0432.CCR-16-0506.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Peereboom DM, Nabors LB, Kumthekar P, Badruddoja MA, Fink KL, Lieberman FS, et al. Phase 2 trial of SL-701 in relapsed/refractory (r/r) glioblastoma (GBM): correlation of immune response with longer-term survival. J Clin Oncol. 2018;36(15_suppl):2058.  https://doi.org/10.1200/JCO.2018.36.15_suppl.2058.CrossRefGoogle Scholar
  85. 85.
    Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013;62(1):125–35.  https://doi.org/10.1007/s00262-012-1319-0.CrossRefPubMedGoogle Scholar
  86. 86.
    Wen PY, Reardon DA, Phuphanich S, Aiken R, Landolfi JC, Curry WT, et al. A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. ASCO Meeting Abstracts. 2014;32(15_suppl):2005.Google Scholar
  87. 87.
    Wick W, Dietrich P-Y, Kuttruff S, Hilf N, Frenzel K, Admon A, et al. GAPVAC-101: first-in-human trial of a highly personalized peptide vaccination approach for patients with newly diagnosed glioblastoma. J Clin Oncol. 2018;36(15_suppl):2000.  https://doi.org/10.1200/JCO.2018.36.15_suppl.2000.CrossRefGoogle Scholar
  88. 88.
    Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(1):84–8.  https://doi.org/10.1038/nm1517.CrossRefPubMedGoogle Scholar
  89. 89.
    Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-Oncology. 2009;11(4):394–402.  https://doi.org/10.1215/15228517-2008-104.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wilmotte R, Burkhardt K, Kindler V, Belkouch MC, Dussex G, Tribolet N, et al. B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport. 2005;16(10):1081–5.CrossRefGoogle Scholar
  91. 91.
    Sampson JH, Vlahovic G, Sahebjam S, Omuro AMP, Baehring JM, Hafler DA, et al. Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143. ASCO Meeting Abstracts. 2015;33:3010.Google Scholar
  92. 92.
    Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget. 2017;8(53):91779–94.  https://doi.org/10.18632/oncotarget.21586.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Reardon DA, Nayak L, Peters KB, Clarke JL, Jordan JT, Groot JFD, et al. Phase II study of pembrolizumab or pembrolizumab plus bevacizumab for recurrent glioblastoma (rGBM) patients. J Clin Oncol. 2018;36(15_suppl):2006.  https://doi.org/10.1200/JCO.2018.36.15_suppl.2006.CrossRefGoogle Scholar
  94. 94.
    Reardon D, Kaley T, Dietrich J, Clarke J, Dunn G, Lim M, et al. Phase 2 study to evaluate safety and efficacy of MEDI4736 (durvalumab [DUR]) in glioblastoma (GBM) patients: an update. J Clin Oncol. 2017;35(15_suppl):2042.CrossRefGoogle Scholar
  95. 95.
    Lassman AB, Rossi MR, Raizer JJ, Abrey LE, Lieberman FS, Grefe CN, et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin Cancer Res. 2005;11(21):7841–50.  https://doi.org/10.1158/1078-0432.CCR-05-0421.CrossRefPubMedGoogle Scholar
  96. 96.
    Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009–14.  https://doi.org/10.1073/pnas.1219747110.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Jun HJ, Acquaviva J, Chi D, Lessard J, Zhu H, Woolfenden S, et al. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene. 2012;31(25):3039–50.  https://doi.org/10.1038/onc.2011.474.CrossRefPubMedGoogle Scholar
  98. 98.
    Meyer M, Reimand J, Lan X, Head R, Zhu X, Kushida M, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A. 2015;112(3):851–6.  https://doi.org/10.1073/pnas.1320611111.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wen PY, Chang SM, Lamborn KR, Kuhn JG, Norden AD, Cloughesy TF, et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology. 2014;16(4):567–78.  https://doi.org/10.1093/neuonc/not247.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.•
    Byron SA, Tran NL, Halperin RF, Phillips JJ, Kuhn JG, de Groot JF, et al. Prospective feasibility trial for genomics-informed treatment in recurrent and progressive glioblastoma. Clin Cancer Res. 2018;24(2):295–305.  https://doi.org/10.1158/1078-0432.CCR-17-0963. This is one of the first genomics-informed trials conducted in patients with recurrent and progressive GBM, and showed the feasibility of personalised medicine in the treatment of GBM. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyNational Neuroscience InstituteSingaporeSingapore

Personalised recommendations