Advertisement

Current Oncology Reports

, 19:83 | Cite as

Treatment for Malignant Pheochromocytomas and Paragangliomas: 5 Years of Progress

  • Paola Jimenez
  • Claudio Tatsui
  • Aaron Jessop
  • Sonali Thosani
  • Camilo Jimenez
Sarcomas (SR Patel, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sarcomas

Abstract

Purpose of Review

The purpose of this manuscript is to review the progress in the field of therapeutics for malignant pheochromocytomas and sympathetic paraganglioma (MPPG) over the past 5 years.

Recent Findings

The manuscript will describe the clinical predictors of survivorship and their influence on the first TNM staging classification for pheochromocytomas and sympathetic paragangliomas, the treatment of hormonal complications, and the rationale that supports the resection of the primary tumor and metastases in patients with otherwise incurable disease. Therapeutic options for patients with bone metastasis to the spine will be presented. The manuscript will also review chemotherapy and propose a maintenance regimen with dacarbazine for patients initially treated with cyclophosphamide, vincristine, and dacarbazine. Finally, the manuscript will review preliminary results of several phase 2 clinical trials of novel radiopharmaceutical agents and tyrosine kinase inhibitors.

Summary

MPPGs are very rare neuroendocrine tumors. MPPGs are usually characterized by a large tumor burden, excessive secretion of catecholamines, and decreased overall survival. Recent discoveries have enhanced our knowledge of the pathogenesis and phenotypes of MPPG. This knowledge is leading to a better understanding of the indications and limitations of the currently available localized and systemic therapies as well as the development of phase 2 clinical trials for novel medications.

Keywords

Malignant pheochromocytoma Malignant paraganglioma Surgery Bone metastases Chemotherapy Clinical trials 

Notes

Compliance with Ethical Standards

Conflict of Interest

Paola Jimenez, Claudio Tatsui, Aaron Jessop, Sonali Thosani, and Camilo Jimenez declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. 1.
    Lenders JW, Pacak K, Walther MM, Linehan WM, Mannelli M, Friberg P, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA. 2002;287(11):1427–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Brito JP, Asi N, Gionfriddo MR, Norman C, Leppin AL, Zeballos-Palacios C, et al. The incremental benefit of functional imaging in pheochromocytoma/paraganglioma: a systematic review. Endocrine. 2015;50(1):176–86.  https://doi.org/10.1007/s12020-015-0544-7.CrossRefPubMedGoogle Scholar
  3. 3.
    Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42.  https://doi.org/10.1210/jc.2014-1498.CrossRefPubMedGoogle Scholar
  4. 4.
    Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, Rich T, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab. 2011;96(3):717–25.  https://doi.org/10.1210/jc.2010-1946.CrossRefPubMedGoogle Scholar
  5. 5.
    Jimenez C, Rohren E, Habra MA, Rich T, Jimenez P, Ayala-Ramirez M, et al. Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep. 2013;15(4):356–71.  https://doi.org/10.1007/s11912-013-0320-x.CrossRefPubMedGoogle Scholar
  6. 6.
    Baudin E, Habra MA, Deschamps F, Cote G, Dumont F, Cabanillas M, et al. Therapy of endocrine disease: treatment of malignant pheochromocytoma and paraganglioma. Eur J Endocrinol. 2014;171(3):R111–22.  https://doi.org/10.1530/EJE-14-0113.CrossRefPubMedGoogle Scholar
  7. 7.
    van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EP. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol. 2014;80(4):487–501.  https://doi.org/10.1111/cen.12341.CrossRefGoogle Scholar
  8. 8.
    Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19.  https://doi.org/10.1038/nrc3648.CrossRefPubMedGoogle Scholar
  9. 9.
    • Roman-Gonzalez A, Zhou S, Ayala-Ramirez M, Shen C, Waguespack SG, Habra MA, Karam JA, Perrier N, Wood CG, Jimenez C (2017) Impact of surgical resection of the primary tumor on overall survival in patients with metastatic pheochromocytoma or sympathetic paraganglioma. Ann Surg.  https://doi.org/10.1097/SLA.0000000000002195. This study describes the benefits derived from the surgical resection of the primary tumor in patients with advanced disease. The study compared patients treated with surgery with those not treated surgically. Surgical resection of the primary was associated with overall survival improvement.
  10. 10.
    Roman-Gonzalez A, Jimenez C (2017) Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr Opin Endocrinol Diabetes Obes.  https://doi.org/10.1097/MED.0000000000000330.
  11. 11.
    Hescot S, Leboulleux S, Amar L, Vezzosi D, Borget I, Bournaud-Salinas C, et al. One-year progression-free survival of therapy-naive patients with malignant pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2013;98(10):4006–12.  https://doi.org/10.1210/jc.2013-1907.CrossRefPubMedGoogle Scholar
  12. 12.
    Park J, Song C, Park M, Yoo S, Park SJ, Hong S, et al. Predictive characteristics of malignant pheochromocytoma. Korean J Urol. 2011;52(4):241–6.  https://doi.org/10.4111/kju.2011.52.4.241.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Press D, Akyuz M, Dural C, Aliyev S, Monteiro R, Mino J, et al. Predictors of recurrence in pheochromocytoma. Surgery. 2014;156(6):1523–1527; discussion 1527-1528.  https://doi.org/10.1016/j.surg.2014.08.044.CrossRefPubMedGoogle Scholar
  14. 14.
    Khadilkar K, Sarathi V, Kasaliwal R, Pandit R, Goroshi M, Malhotra G, et al. Predictors of malignancy in patients with pheochromocytomas/paragangliomas: Asian Indian experience. Endocr Connect. 2016;5(6):89–97.  https://doi.org/10.1530/EC-16-0086.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    • Jimenez C, Libutti SK, Landry CS, Lloyd RV, McKay RR, Rohren E, Seethala RR, Wang TS, Chen H, Perrier ND (2017) Adrenal-Neuroendocrine Tumors. In: Amin MB (ed) AJCC cancer staging manual. 8th edn. Springer, New York, pp 919–927. The first TNM staging system for patients with pheochromocytomas and paragangliomas. Google Scholar
  16. 16.
    Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23(6):739–52.  https://doi.org/10.1016/j.ccr.2013.04.018.CrossRefPubMedGoogle Scholar
  17. 17.
    Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libe R, et al. Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J Clin Endocrinol Metab. 2012;97(6):E954–62.  https://doi.org/10.1210/jc.2011-3437.CrossRefPubMedGoogle Scholar
  18. 18.
    Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab. 2007;92(10):3822–8.  https://doi.org/10.1210/jc.2007-0709.CrossRefPubMedGoogle Scholar
  19. 19.
    Burnichon N, Buffet A, Parfait B, Letouze E, Laurendeau I, Loriot C, et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet. 2012;21(26):5397–405.  https://doi.org/10.1093/hmg/dds374.CrossRefPubMedGoogle Scholar
  20. 20.
    Fishbein L, Nathanson KL (2017) Pheochromocytoma and paraganglioma susceptibility genes: estimating the associated risk of disease. JAMA Oncol.  https://doi.org/10.1001/jamaoncol.2017.0222.
  21. 21.
    Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23(9):2440–6.  https://doi.org/10.1093/hmg/ddt639.CrossRefPubMedGoogle Scholar
  22. 22.
    Thosani S, Ayala-Ramirez M, Palmer L, MI H, Rich T, Gagel RF, et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab. 2013;98(11):E1813–9.  https://doi.org/10.1210/jc.2013-1653.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Burnichon N, Cascon A, Schiavi F, Morales NP, Comino-Mendez I, Abermil N, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(10):2828–37.  https://doi.org/10.1158/1078-0432.CCR-12-0160.CrossRefGoogle Scholar
  24. 24.
    Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Perez L, King EE, et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA. 2010;304(23):2611–9.  https://doi.org/10.1001/jama.2010.1830.CrossRefPubMedGoogle Scholar
  25. 25.
    Ayala-Ramirez M, Palmer JL, Hofmann MC, de la Cruz M, Moon BS, Waguespack SG, et al. Bone metastases and skeletal-related events in patients with malignant pheochromocytoma and sympathetic paraganglioma. J Clin Endocrinol Metab. 2013;98(4):1492–7.  https://doi.org/10.1210/jc.2012-4231.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Plouin PF, Fitzgerald P, Rich T, Ayala-Ramirez M, Perrier ND, Baudin E, et al. Metastatic pheochromocytoma and paraganglioma: focus on therapeutics. Horm Metab Res. 2012;44(5):390–9.  https://doi.org/10.1055/s-0031-1299707.CrossRefPubMedGoogle Scholar
  27. 27.
    Thosani S, Ayala-Ramirez M, Roman-Gonzalez A, Zhou S, Thosani N, Bisanz A, et al. Constipation: an overlooked, unmanaged symptom of patients with pheochromocytoma and sympathetic paraganglioma. Eur J Endocrinol. 2015;173(3):377–87.  https://doi.org/10.1530/EJE-15-0456.CrossRefPubMedGoogle Scholar
  28. 28.
    Buhl T, Mortensen J, Kjaer A. I-123 MIBG imaging and intraoperative localization of metastatic pheochromocytoma: a case report. Clin Nucl Med. 2002;27(3):183–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Keiser HR, Goldstein DS, Wade JL, Douglas FL, Averbuch SD. Treatment of malignant pheochromocytoma with combination chemotherapy. Hypertension. 1985;7(3 Pt 2):I18–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Niemeijer ND, Alblas G, van Hulsteijn LT, Dekkers OM, Corssmit EP. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis. Clin Endocrinol. 2014;81(5):642–51.  https://doi.org/10.1111/cen.12542.CrossRefGoogle Scholar
  31. 31.
    Ayala-Ramirez M, Feng L, Habra MA, Rich T, Dickson PV, Perrier N, et al. Clinical benefits of systemic chemotherapy for patients with metastatic pheochromocytomas or sympathetic extra-adrenal paragangliomas: insights from the largest single-institutional experience. Cancer. 2012;118(11):2804–12.  https://doi.org/10.1002/cncr.26577.CrossRefPubMedGoogle Scholar
  32. 32.
    Grogan RH, Mitmaker EJ, Duh QY. Changing paradigms in the treatment of malignant pheochromocytoma. Cancer Control J Moffitt Cancer Cent. 2011;18(2):104–12.CrossRefGoogle Scholar
  33. 33.
    Tay CG, Lee VW, Ong LC, Goh KJ, Ariffin H, Fong CY (2017) Vincristine-induced peripheral neuropathy in survivors of childhood acute lymphoblastic leukaemia. Pediatr Blood Cancer.  https://doi.org/10.1002/pbc.26471.
  34. 34.
    Kavcic M, Koritnik B, Krzan M, Velikonja O, Prelog T, Stefanovic M, Debeljak M, Jazbec J (2017) Electrophysiological studies to detect peripheral neuropathy in children treated with vincristine. J Pediatr Hematol Oncol.  https://doi.org/10.1097/MPH.0000000000000825.
  35. 35.
    Hadoux J, Favier J, Scoazec JY, Leboulleux S, Al Ghuzlan A, Caramella C, et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer. 2014;135(11):2711–20.  https://doi.org/10.1002/ijc.28913.CrossRefPubMedGoogle Scholar
  36. 36.
    Tournigand C, Cervantes A, Figer A, Lledo G, Flesch M, Buyse M, et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-go fashion in advanced colorectal cancer—a GERCOR study. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(3):394–400.  https://doi.org/10.1200/JCO.2005.03.0106.CrossRefGoogle Scholar
  37. 37.
    Barlesi F, Scherpereel A, Rittmeyer A, Pazzola A, Ferrer Tur N, Kim JH, et al. Randomized phase III trial of maintenance bevacizumab with or without pemetrexed after first-line induction with bevacizumab, cisplatin, and pemetrexed in advanced nonsquamous non-small-cell lung cancer: AVAPERL (MO22089). J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(24):3004–11.  https://doi.org/10.1200/JCO.2012.42.3749.CrossRefGoogle Scholar
  38. 38.
    Oza AM, Cook AD, Pfisterer J, Embleton A, Ledermann JA, Pujade-Lauraine E, et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol. 2015;16(8):928–36.  https://doi.org/10.1016/S1470-2045(15)00086-8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gulenchyn KY, Yao X, Asa SL, Singh S, Law C. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol. 2012;24(4):294–308.  https://doi.org/10.1016/j.clon.2011.12.003.CrossRefGoogle Scholar
  40. 40.
    Baez JC, Jagannathan JP, Krajewski K, O'Regan K, Zukotynski K, Kulke M, et al. Pheochromocytoma and paraganglioma: imaging characteristics. Cancer Imaging Off Publ Int Cancer Imaging Soc. 2012;12:153–62.  https://doi.org/10.1102/1470-7330.2012.0016.Google Scholar
  41. 41.
    Basu S, Abhyankar A, Jatale P. The current place and indications of 131I-metaiodobenzylguanidine therapy in the era of peptide receptor radionuclide therapy: determinants to consider for evolving the best practice and envisioning a personalized approach. Nucl Med Commun. 2015;36(1):1–7.  https://doi.org/10.1097/MNM.0000000000000209.CrossRefPubMedGoogle Scholar
  42. 42.
    Loh KC, Fitzgerald PA, Matthay KK, Yeo PP, Price DC. The treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine (131I-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Investig. 1997;20(11):648–58.CrossRefGoogle Scholar
  43. 43.
    Shapiro B, Sisson JC, Wieland DM, Mangner TJ, Zempel SM, Mudgett E, et al. Radiopharmaceutical therapy of malignant pheochromocytoma with [131I]metaiodobenzylguanidine: results from ten years of experience. J Nucl Biol Med. 1991;35(4):269–76.PubMedGoogle Scholar
  44. 44.
    Rose B, Matthay KK, Price D, Huberty J, Klencke B, Norton JA, et al. High-dose 131I-metaiodobenzylguanidine therapy for 12 patients with malignant pheochromocytoma. Cancer. 2003;98(2):239–48.  https://doi.org/10.1002/cncr.11518.CrossRefPubMedGoogle Scholar
  45. 45.
    Gonias S, Goldsby R, Matthay KK, Hawkins R, Price D, Huberty J, et al. Phase II study of high-dose [131I]metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(25):4162–8.  https://doi.org/10.1200/JCO.2008.21.3496.CrossRefGoogle Scholar
  46. 46.
    Barrett JA, Joyal JL, Hillier SM, Maresca KP, Femia FJ, Kronauge JF, et al. Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharm. 2010;25(3):299–308.  https://doi.org/10.1089/cbr.2009.0695.CrossRefPubMedGoogle Scholar
  47. 47.
    Coleman RE, Stubbs JB, Barrett JA, de la Guardia M, Lafrance N, Babich JW. Radiation dosimetry, pharmacokinetics, and safety of ultratrace iobenguane I-131 in patients with malignant pheochromocytoma/paraganglioma or metastatic carcinoid. Cancer Biother Radiopharm. 2009;24(4):469–75.  https://doi.org/10.1089/cbr.2008.0584.CrossRefPubMedGoogle Scholar
  48. 48.
    • Jimenez C, Pryma DA, Sullivan DC, Schwarz JK, Noto RB, Stambler N, Armor T, Jensen JJ, Israel RJ ( 2015) Long term follow-up of a pivotal phase 2 study of Ultratrace® iobenguane I-131 (AZEDRATM) in patients with malignant relapsed/refractory pheochromocytoma (Pheo)/paraganglioma (Para). Endocrine Society’s 97th Annual Meeting and Expo, March 5–8, 2015 - San Diego. This abstract described the preliminary results of the phase 2 study of patients with MPPG treated with Ultratrace iobenguan I-131. The results showed that treatment caused sustained blood pressure control in 35% of patients. Ultratrace was associated with partial responses and stable disease in more than 90% of patients. Google Scholar
  49. 49.
    Hoy SM. Cabozantinib: a review of its use in patients with medullary thyroid cancer. Drugs. 2014;74(12):1435–44.  https://doi.org/10.1007/s40265-014-0265-x.CrossRefPubMedGoogle Scholar
  50. 50.
    Scott LJ. Lenvatinib: first global approval. Drugs. 2015;75(5):553–60.  https://doi.org/10.1007/s40265-015-0383-0.CrossRefPubMedGoogle Scholar
  51. 51.
    Ayala-Ramirez M, Chougnet CN, Habra MA, Palmer JL, Leboulleux S, Cabanillas ME, et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J Clin Endocrinol Metab. 2012;97(11):4040–50.  https://doi.org/10.1210/jc.2012-2356.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the Alliance A031203 CABOSUN Trial. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(6):591–7.  https://doi.org/10.1200/JCO.2016.70.7398.CrossRefGoogle Scholar
  53. 53.
    Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(25):3005–13.  https://doi.org/10.1200/JCO.2015.65.5597.CrossRefGoogle Scholar
  54. 54.
    Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.  https://doi.org/10.1158/1535-7163.MCT-11-0264.CrossRefPubMedGoogle Scholar
  55. 55.
    • Jimenez C, Waguespack S, Habra MA, Busaidy N, Dadu R, Tamsen G, Jessop A (2017) A phase 2 clinical trial with cabozantinib for patients with malignant pheochromocytoma and paraganglioma: preliminary results. The University of Texas MD Anderson Cancer Center, Oral Presentation, Global Academic Programs Symposium, Houston. Preliminary results of this phase 2 study described an objective response rate of 45%, with clinical benefits observed in 91% of patients. No serious adverse events were reported. PFS was 11 months. Google Scholar
  56. 56.
    Vogel J, Atanacio AS, Prodanov T, Turkbey BI, Adams K, Martucci V, et al. External beam radiation therapy in treatment of malignant pheochromocytoma and paraganglioma. Front Oncol. 2014;4:166.  https://doi.org/10.3389/fonc.2014.00166.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    • Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.  https://doi.org/10.1016/S0140-6736(05)66954-1. This study demonstrated that patients with spine metastases treated with decompressive surgical resection followed by radiation therapy had better outcomes than patients treated with radiation therapy alone. CrossRefPubMedGoogle Scholar
  58. 58.
    Sahgal A, Larson DA, Chang EL. Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys. 2008;71(3):652–65.  https://doi.org/10.1016/j.ijrobp.2008.02.060.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang XS, Rhines LD, Shiu AS, Yang JN, Selek U, Gning I, et al. Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1-2 trial. Lancet Oncol. 2012;13(4):395–402.  https://doi.org/10.1016/S1470-2045(11)70384-9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yamada Y, Bilsky MH, Lovelock DM, Venkatraman ES, Toner S, Johnson J, et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71(2):484–90.  https://doi.org/10.1016/j.ijrobp.2007.11.046.CrossRefPubMedGoogle Scholar
  61. 61.
    Bilsky MH, Laufer I, Burch S. Shifting paradigms in the treatment of metastatic spine disease. Spine (Phila Pa 1976). 2009;34(22 Suppl):S101–7.  https://doi.org/10.1097/BRS.0b013e3181bac4b2.CrossRefGoogle Scholar
  62. 62.
    Sahgal A, Bilsky M, Chang EL, Ma L, Yamada Y, Rhines LD, et al. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine. 2011;14(2):151–66.  https://doi.org/10.3171/2010.9.SPINE091005.CrossRefPubMedGoogle Scholar
  63. 63.
    Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010;35(22):E1221–9.  https://doi.org/10.1097/BRS.0b013e3181e16ae2.CrossRefGoogle Scholar
  64. 64.
    Fisher CG, Versteeg AL, Schouten R, Boriani S, Varga PP, Rhines LD, et al. Reliability of the spinal instability neoplastic scale among radiologists: an assessment of instability secondary to spinal metastases. AJR Am J Roentgenol. 2014;203(4):869–74.  https://doi.org/10.2214/AJR.13.12269.CrossRefPubMedGoogle Scholar
  65. 65.
    Fisher CG, Schouten R, Versteeg AL, Boriani S, Varga PP, Rhines LD, et al. Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases. Radiat Oncol. 2014;9:69.  https://doi.org/10.1186/1748-717X-9-69.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Burton AW, Rhines LD, Mendel E. Vertebroplasty and kyphoplasty: a comprehensive review. Neurosurg Focus. 2005;18(3):e1.CrossRefPubMedGoogle Scholar
  67. 67.
    Moussazadeh N, Rubin DG, McLaughlin L, Lis E, Bilsky MH, Laufer I. Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J. 2015;15(7):1609–17.  https://doi.org/10.1016/j.spinee.2015.03.037.CrossRefPubMedGoogle Scholar
  68. 68.
    Akeyson EW, McCutcheon IE. Single-stage posterior vertebrectomy and replacement combined with posterior instrumentation for spinal metastasis. J Neurosurg. 1996;85(2):211–20.  https://doi.org/10.3171/jns.1996.85.2.0211.CrossRefPubMedGoogle Scholar
  69. 69.
    Sciubba DM, Gallia GL, McGirt MJ, Woodworth GF, Garonzik IM, Witham T, et al. Thoracic kyphotic deformity reduction with a distractible titanium cage via an entirely posterior approach. Neurosurgery. 2007;60(4 Suppl 2):223–230; discussion 230-221.  https://doi.org/10.1227/01.NEU.0000255385.18335.A8.PubMedGoogle Scholar
  70. 70.
    Xu R, Garces-Ambrossi GL, McGirt MJ, Witham TF, Wolinsky JP, Bydon A, et al. Thoracic vertebrectomy and spinal reconstruction via anterior, posterior, or combined approaches: clinical outcomes in 91 consecutive patients with metastatic spinal tumors. J Neurosurg Spine. 2009;11(3):272–84.  https://doi.org/10.3171/2009.3.SPINE08621.CrossRefPubMedGoogle Scholar
  71. 71.
    Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8.  https://doi.org/10.3171/2010.3.SPINE09459.CrossRefPubMedGoogle Scholar
  72. 72.
    Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–51.  https://doi.org/10.1634/theoncologist.2012-0293.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Laufer I, Iorgulescu JB, Chapman T, Lis E, Shi W, Zhang Z, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207–14.  https://doi.org/10.3171/2012.11.SPINE12111.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Paola Jimenez
    • 1
    • 2
  • Claudio Tatsui
    • 3
  • Aaron Jessop
    • 4
  • Sonali Thosani
    • 1
  • Camilo Jimenez
    • 1
  1. 1.Department of Endocrine Neoplasia and Hormonal Disorders, Unit 1461The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Hemato-Oncologos AsociadosBogotaColombia
  3. 3.Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.Department of Nuclear MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations