Advertisement

Immunotherapy for the Treatment of Uveal Melanoma: Current Status and Emerging Therapies

  • Kimberly M. Komatsubara
  • Richard D. Carvajal
Melanoma (RJ Sullivan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Melanoma

Abstract

Purpose of Review

Uveal melanoma is a distinct subset of melanoma with a biology and treatment approach that is unique from that of cutaneous melanoma. Here we will review the current data evaluating immunotherapies in both the adjuvant and metastatic settings in uveal melanoma.

Recent Findings

In the adjuvant setting, interferon demonstrated no survival benefit in uveal melanoma, and studies evaluating immune-based strategies such as vaccine therapy are ongoing. Anti-CTLA-4 and anti-PD-1/ PD-L1 blockade in uveal melanoma have been evaluated in several small prospective and/or retrospective studies with rare responses and no overall survival benefit demonstrated. Ongoing studies evaluating combination checkpoint inhibition and other antibody-based therapies are ongoing.

Summary

Although immunotherapy with anti-CTLA-4 and anti-PD-1 agents has dramatically changed the treatment approach to cutaneous melanoma, its success in uveal melanoma has been much more limited. Clinical trial participation should be prioritized in patients with uveal melanoma.

Keywords

Uveal melanoma Ocular melanoma Immunotherapy Checkpoint inhibitors CTLA-4 PD-1 PD-L1 Ipilimumab Nivolumab Pembrolizumab 

Notes

Compliance with Ethical Standards

Conflict of Interest

Kimberly M. Komatsubara declares that she has no conflict of interest.

Richard D. Carvajal has received compensation from Immunocore, Merck, and Bristol-Myers Squibb for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–5. doi: 10.1016/j.ophtha.2011.01.040.CrossRefPubMedGoogle Scholar
  2. 2.
    Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer. 1998;83(8):1664–78.CrossRefPubMedGoogle Scholar
  3. 3.
    McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, Chen VW. Incidence of noncutaneous melanomas in the U.S. Cancer. 2005;103(5):1000–7. doi: 10.1002/cncr.20866.CrossRefPubMedGoogle Scholar
  4. 4.
    Damato B. Progress in the management of patients with uveal melanoma. The 2012 Ashton Lecture. Eye (Lond). 2012;26(9):1157–72. doi: 10.1038/eye.2012.126.CrossRefGoogle Scholar
  5. 5.
    Damato EM, Damato BE. Detection and time to treatment of uveal melanoma in the United Kingdom: an evaluation of 2,384 patients. Ophthalmology. 2012;119(8):1582–9. doi: 10.1016/j.ophtha.2012.01.048.CrossRefPubMedGoogle Scholar
  6. 6.
    Andreoli MT, Mieler WF, Leiderman YI. Epidemiological trends in uveal melanoma. Br J Ophthalmol. 2015;99(11):1550–3. doi: 10.1136/bjophthalmol-2015-306810.CrossRefPubMedGoogle Scholar
  7. 7.
    Kujala E, Makitie T, Kivela T. Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2003;44(11):4651–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Rietschel P, Panageas KS, Hanlon C, Patel A, Abramson DH, Chapman PB. Variates of survival in metastatic uveal melanoma. J Clin Oncol. 2005;23(31):8076–80. doi: 10.1200/JCO.2005.02.6534.CrossRefPubMedGoogle Scholar
  9. 9.
    Diener-West M, Reynolds SM, Agugliaro DJ, Caldwell R, Cumming K, Earle JD, et al. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group report no. 26. Arch Ophthalmol. 2005;123(12):1639–43. doi: 10.1001/archopht.123.12.1639.CrossRefPubMedGoogle Scholar
  10. 10.
    Kuk D, Shoushtari AN, Barker CA, Panageas KS, Munhoz RR, Momtaz P, et al. Prognosis of mucosal, uveal, acral, nonacral cutaneous, and unknown primary melanoma from the time of first metastasis. Oncologist. 2016;21(7):848–54. doi: 10.1634/theoncologist.2015-0522.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54. doi: 10.1038/nature00766.CrossRefPubMedGoogle Scholar
  12. 12.
    Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. doi: 10.1016/j.cell.2015.05.044.CrossRefGoogle Scholar
  13. 13.
    Cancer Genome Atlas Network. Cancer Genome Atlas Network: uveal melanoma. 2016. https://cancergenome.nih.gov/.
  14. 14.
    Piperno-Neumann S, Kapiteijn E, Larkin J, Carvajal RD, Luke JJ, Seifert H, et al. Landscape of genetic alterations in patients with metastatic uveal melanoma. ASCO Meeting Abstracts. 2014;32(15_suppl):9043.Google Scholar
  15. 15.
    Cohen Y, Goldenberg-Cohen N, Parrella P, Chowers I, Merbs SL, Pe’er J, et al. Lack of BRAF mutation in primary uveal melanoma. Invest Ophthalmol Vis Sci. 2003;44(7):2876–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Rimoldi D, Salvi S, Lienard D, Lejeune FJ, Speiser D, Zografos L, et al. Lack of BRAF mutations in uveal melanoma. Cancer Res. 2003;63(18):5712–5.PubMedGoogle Scholar
  17. 17.
    Weber A, Hengge UR, Urbanik D, Markwart A, Mirmohammadsaegh A, Reichel MB, et al. Absence of mutations of the BRAF gene and constitutive activation of extracellular-regulated kinase in malignant melanomas of the uvea. Lab Investig. 2003;83(12):1771–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Kilic E, Bruggenwirth HT, Verbiest MM, Zwarthoff EC, Mooy NM, Luyten GP, et al. The RAS-BRAF kinase pathway is not involved in uveal melanoma. Melanoma Res. 2004;14(3):203–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Zuidervaart W, van Nieuwpoort F, Stark M, Dijkman R, Packer L, Borgstein AM, et al. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer. 2005;92(11):2032–8. doi: 10.1038/sj.bjc.6602598.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191–9. doi: 10.1056/NEJMoa1000584.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Griewank KG, van de Nes J, Schilling B, Moll I, Sucker A, Kakavand H, et al. Genetic and clinico-pathologic analysis of metastatic uveal melanoma. Mod Pathol. 2014;27(2):175–83. doi: 10.1038/modpathol.2013.138.CrossRefPubMedGoogle Scholar
  22. 22.
    Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602. doi: 10.1038/nature07586.CrossRefPubMedGoogle Scholar
  23. 23.
    Johansson P, Aoude LG, Wadt K, Glasson WJ, Warrier SK, Hewitt AW, et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget. 2016;7(4):4624–31. doi: 10.18632/oncotarget.6614.PubMedGoogle Scholar
  24. 24.
    Moore AR, Ceraudo E, Sher JJ, Guan Y, Shoushtari AN, Chang MT, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet. 2016; doi: 10.1038/ng.3549.
  25. 25.
    Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3. doi: 10.1126/science.1194472.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Harbour JW, Roberson ED, Anbunathan H, Onken MD, Worley LA, Bowcock AM. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet. 2013;45(2):133–5. doi: 10.1038/ng.2523.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Martin M, Masshofer L, Temming P, Rahmann S, Metz C, Bornfeld N, et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet. 2013;45(8):933–6. doi: 10.1038/ng.2674.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Niederkorn JY. Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism? Front Immunol. 2012;3:148. doi: 10.3389/fimmu.2012.00148.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Apte RS, Niederkorn JY. Isolation and characterization of a unique natural killer cell inhibitory factor present in the anterior chamber of the eye. J Immunol. 1996;156(8):2667–73.PubMedGoogle Scholar
  30. 30.
    Apte RS, Mayhew E, Niederkorn JY. Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest Ophthalmol Vis Sci. 1997;38(6):1277–82.PubMedGoogle Scholar
  31. 31.
    de Waard-Siebinga I, Hilders CG, Hansen BE, van Delft JL, Jager MJ. HLA expression and tumor-infiltrating immune cells in uveal melanoma. Graefes Arch Clin Exp Ophthalmol. 1996;234(1):34–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen PW, Mellon JK, Mayhew E, Wang S, He YG, Hogan N, et al. Uveal melanoma expression of indoleamine 2,3-deoxygenase: establishment of an immune privileged environment by tryptophan depletion. Exp Eye Res. 2007;85(5):617–25. doi: 10.1016/j.exer.2007.07.014.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ryu YH, Kim JC. Expression of indoleamine 2,3-dioxygenase in human corneal cells as a local immunosuppressive factor. Invest Ophthalmol Vis Sci. 2007;48(9):4148–52. doi: 10.1167/iovs.05-1336.CrossRefPubMedGoogle Scholar
  34. 34.
    Yang W, Chen PW, Li H, Alizadeh H, Niederkorn JY. PD-L1: PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro. Invest Ophthalmol Vis Sci. 2008;49(6):2518–25. doi: 10.1167/iovs.07-1606.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    de Vries TJ, Trancikova D, Ruiter DJ, van Muijen GN. High expression of immunotherapy candidate proteins gp100, MART-1, tyrosinase and TRP-1 in uveal melanoma. Br J Cancer. 1998;78(9):1156–61.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Niederkorn JY. Immune escape mechanisms of intraocular tumors. Prog Retin Eye Res. 2009;28(5):329–47. doi: 10.1016/j.preteyeres.2009.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    de la Cruz PO Jr, Specht CS, IW ML. Lymphocytic infiltration in uveal malignant melanoma. Cancer. 1990;65(1):112–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Whelchel JC, Farah SE, McLean IW, Burnier MN. Immunohistochemistry of infiltrating lymphocytes in uveal malignant melanoma. Invest Ophthalmol Vis Sci. 1993;34(8):2603–6.PubMedGoogle Scholar
  39. 39.
    Durie FH, Campbell AM, Lee WR, Damato BE. Analysis of lymphocytic infiltration in uveal melanoma. Invest Ophthalmol Vis Sci. 1990;31(10):2106–10.PubMedGoogle Scholar
  40. 40.
    Makitie T, Summanen P, Tarkkanen A, Kivela T. Tumor-infiltrating macrophages (CD68(+) cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42(7):1414–21.PubMedGoogle Scholar
  41. 41.
    Bronkhorst IH, Ly LV, Jordanova ES, Vrolijk J, Versluis M, Luyten GP, et al. Detection of M2-macrophages in uveal melanoma and relation with survival. Invest Ophthalmol Vis Sci. 2011;52(2):643–50. doi: 10.1167/iovs.10-5979.CrossRefPubMedGoogle Scholar
  42. 42.
    Jager MJ, Ly LV, El Filali M, Madigan MC. Macrophages in uveal melanoma and in experimental ocular tumor models: friends or foes? Prog Retin Eye Res. 2011;30(2):129–46. doi: 10.1016/j.preteyeres.2010.11.004.CrossRefPubMedGoogle Scholar
  43. 43.
    Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest. 2010;120(6):2030–9. doi: 10.1172/JCI42002.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rothermel LD, Sabesan AC, Stephens DJ, Chandran SS, Paria BC, Srivastava AK, et al. Identification of an immunogenic subset of metastatic uveal melanoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2016;22(9):2237–49. doi: 10.1158/1078-0432.CCR-15-2294.CrossRefGoogle Scholar
  45. 45.
    Collaborative Ocular Melanoma Study G. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V. Twelve-year mortality rates and prognostic factors: COMS report no. 28. Arch Ophthalmol. 2006;124(12):1684–93. doi: 10.1001/archopht.124.12.1684.CrossRefGoogle Scholar
  46. 46.
    Desjardins L, Levy C, Lumbroso Le Rouic L, Cassoux N, Piperno-Neumann S, Mariani P et al. Adjuvant intravenous therapy by fomustine in uveal melanoma: a randomized study. Acta Ophthalmol. 2011;89(s248).Google Scholar
  47. 47.
    Voelter V, Schalenbourg A, Pampallona S, Peters S, Halkic N, Denys A, et al. Adjuvant intra-arterial hepatic fotemustine for high-risk uveal melanoma patients. Melanoma Res. 2008;18(3):220–4. doi: 10.1097/CMR.0b013e32830317de.CrossRefPubMedGoogle Scholar
  48. 48.
    McLean IW, Berd D, Mastrangelo MJ, Shields JA, Davidorf FH, Grever M, et al. A randomized study of methanol-extraction residue of bacille Calmette-Guerin as postsurgical adjuvant therapy of uveal melanoma. Am J Ophthalmol. 1990;110(5):522–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Lane AM, Egan KM, Harmon D, Holbrook A, Munzenrider JE, Gragoudas ES. Adjuvant interferon therapy for patients with uveal melanoma at high risk of metastasis. Ophthalmology. 2009;116(11):2206–12. doi: 10.1016/j.ophtha.2009.04.044.CrossRefPubMedGoogle Scholar
  50. 50.
    Richtig E, Langmann G, Schlemmer G, Mullner K, Papaefthymiou G, Bergthaler P, et al. Safety and efficacy of interferon alfa-2b in the adjuvant treatment of uveal melanoma. Ophthalmologe. 2006;103(6):506–11. doi: 10.1007/s00347-006-1350-7.CrossRefPubMedGoogle Scholar
  51. 51.
    Bedikian AY, Papadopoulos N, Plager C, Eton O, Ring S. Phase II evaluation of temozolomide in metastatic choroidal melanoma. Melanoma Res. 2003;13(3):303–6. doi: 10.1097/01.cmr.0000056231.78713.e2.CrossRefPubMedGoogle Scholar
  52. 52.
    Flaherty LE, Unger JM, Liu PY, Mertens WC, Sondak VK. Metastatic melanoma from intraocular primary tumors: the Southwest Oncology Group experience in phase II advanced melanoma clinical trials. Am J Clin Oncol. 1998;21(6):568–72.CrossRefPubMedGoogle Scholar
  53. 53.
    Kivela T, Suciu S, Hansson J, Kruit WH, Vuoristo MS, Kloke O, et al. Bleomycin, vincristine, lomustine and dacarbazine (BOLD) in combination with recombinant interferon alpha-2b for metastatic uveal melanoma. Eur J Cancer. 2003;39(8):1115–20.CrossRefPubMedGoogle Scholar
  54. 54.
    Carvajal RD, Sosman JA, Quevedo JF, Milhem MM, Joshua AM, Kudchadkar RR, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014;311(23):2397–405. doi: 10.1001/jama.2014.6096.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM et al. SUMIT: phase III, randomized, placebo-controlled, double-blind trial of selumetnib in combination with dacarbazine in patients with metastatic uveal melanoma.;Late-breaking Abstract and Oral Presentation at the Society for Melanoma Research Congress, 18–21 November 2015. San Francisco, CA. (abstract available at: http://www.melanomacongress.com/docs/SMR_2015_Congress_Late_Breaking_Abstracts.pdf, accessed on 10 December 2015.).
  56. 56.
    Shoushtari AN, Kudchadkar R, Panageas KS, Murthy RK, Jung M, Shah R et al. A randomized phase 2 study of trametinib with or without GSK2141795 in patients with advanced uveal melanoma. ASCO Meeting Abstracts. 2016;34(suppl; abstr 9511).Google Scholar
  57. 57.
    Carvajal RD, Schwartz GK, Tezel T, Marr B, Francis JH, Nathan PD. Metastatic disease from uveal melanoma: treatment options and future prospects. Br J Ophthalmol. 2016; doi: 10.1136/bjophthalmol-2016-309034.
  58. 58.
    Leyvraz S, Piperno-Neumann S, Suciu S, Baurain JF, Zdzienicki M, Testori A, et al. Hepatic intra-arterial versus intravenous fotemustine in patients with liver metastases from uveal melanoma (EORTC 18021): a multicentric randomized trial. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2014;25(3):742–6. doi: 10.1093/annonc/mdt585.CrossRefGoogle Scholar
  59. 59.
    Valsecchi ME, Terai M, Eschelman DJ, Gonsalves CF, Chervoneva I, Shields JA, et al. Double-blinded, randomized phase II study using embolization with or without granulocyte-macrophage colony-stimulating factor in uveal melanoma with hepatic metastases. J Vasc Interv Radiol. 2015;26(4):523–532 e2. doi: 10.1016/j.jvir.2014.11.037.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi: 10.1056/NEJMoa1003466.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26. doi: 10.1056/NEJMoa1104621.CrossRefPubMedGoogle Scholar
  62. 62.
    • Piulats Rodriguez JM, Ochoa de Olza M, Codes M, Lopez-Martin JA, Berrocal A, Garcia M, et al. Phase II study evaluating ipilimumab as a single agent in the first-line treatment of adult patients (Pts) with metastatic uveal melanoma (MUM): the GEM-1 trial. ASCO Meeting Abstracts. 2014;32(15_suppl):9033. This is one of the two completed single-arm phase II trials of ipilimumab in metastatic uveal melanoma. In the interim analysis, the response rate was 7.7 and 46.2% had stable disease. Median overall survival was 9.8 months.Google Scholar
  63. 63.
    • Zimmer L, Vaubel J, Mohr P, Hauschild A, Utikal J, Simon J, et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naive patients with metastatic uveal melanoma. PLoS One. 2015;10(3):e0118564. doi: 10.1371/journal.pone.0118564. This is the second completed single-arm phase II trial of ipilimumab in metastatic uveal melanoma that showed more limited activity. There were no responses and median progression-free survival was 2.8 months and overall survival was 6.8 months.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    • Luke JJ, Callahan MK, Postow MA, Romano E, Ramaiya N, Bluth M, et al. Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer. 2013;119(20):3687–95. doi: 10.1002/cncr.28282. This is one of the larger retrospective, multi-center analyses evaluating the efficacy of ipilimumab in metastatic uveal melanoma. Overall, the immune-related response rate was 5.1% and median overall survival was 9.6 months.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Maio M, Danielli R, Chiarion-Sileni V, Pigozzo J, Parmiani G, Ridolfi R, et al. Efficacy and safety of ipilimumab in patients with pre-treated, uveal melanoma. Ann Oncol. 2013;24(11):2911–5. doi: 10.1093/annonc/mdt376.CrossRefPubMedGoogle Scholar
  66. 66.
    Danielli R, Ridolfi R, Chiarion-Sileni V, Queirolo P, Testori A, Plummer R, et al. Ipilimumab in pretreated patients with metastatic uveal melanoma: safety and clinical efficacy. Cancer Immunol Immunother: CII. 2012;61(1):41–8. doi: 10.1007/s00262-011-1089-0.CrossRefPubMedGoogle Scholar
  67. 67.
    Kelderman S, van der Kooij MK, van den Eertwegh AJ, Soetekouw PM, Jansen RL, van den Brom RR, et al. Ipilimumab in pretreated metastastic uveal melanoma patients. Results of the Dutch Working group on Immunotherapy of Oncology (WIN-O). Acta Oncol. 2013;52(8):1786–8. doi: 10.3109/0284186X.2013.786839.CrossRefPubMedGoogle Scholar
  68. 68.
    Khattak MA, Fisher R, Hughes P, Gore M, Larkin J. Ipilimumab activity in advanced uveal melanoma. Melanoma Res. 2013;23(1):79–81. doi: 10.1097/CMR.0b013e32835b554f.CrossRefPubMedGoogle Scholar
  69. 69.
    Deo MA. Long-term survival benefit from ipilimumab treatment in metastatic uveal melanoma patients. ASCO Meeting Abstracts. 2014;32(15_suppl):3060.Google Scholar
  70. 70.
    Joshua AM, Monzon JG, Mihalcioiu C, Hogg D, Smylie M, Cheng T. A phase 2 study of tremelimumab in patients with advanced uveal melanoma. Melanoma Res. 2015;25(4):342–7. doi: 10.1097/CMR.0000000000000175.CrossRefPubMedGoogle Scholar
  71. 71.
    • Algazi AP, Tsai KK, Shoushtari AN, Munhoz RR, Eroglu Z, Piulats JM, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016; doi: 10.1002/cncr.30258. This is the largest study to date of anti-PD-1/anti-PD-L1 agents in metastatic uveal melanoma. In this retrospective, multi-center study of 58 metastatic uveal melanoma patients treated with anti-PD-1 or anti-PD-L1 therapy, responses were rare (3.6% response rate). Median progression-free survival and overall survival were 2.8 and 7.6 months, respectively.
  72. 72.
    Karydis I, Chan PY, Wheater M, Arriola E, Szlosarek PW, Ottensmeier CH. Clinical activity and safety of pembrolizumab in ipilimumab pre-treated patients with uveal melanoma. Oncoimmunology. 2016;5(5):e1143997. doi: 10.1080/2162402X.2016.1143997.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kottschade LA, McWilliams RR, Markovic SN, Block MS, Villasboas Bisneto J, Pham AQ, et al. The use of pembrolizumab for the treatment of metastatic uveal melanoma. Melanoma Res. 2016;26(3):300–3. doi: 10.1097/CMR.0000000000000242.CrossRefPubMedGoogle Scholar
  74. 74.
    Piperno-Neumann S, Servois V, Mariani P, Cassoux N, Barhnill R, Rodrigues MJ. Activity of anti-PD1 drugs in uveal melanoma patients. ASCO Meeting Abstracts. 2016; 34, 2016 (suppl; abstr 9588).Google Scholar
  75. 75.
    Khan SA, Callahan M, Postow MA, Chapman PB, Schwartz GK, Dickson MA, et al. Ipilimumab in the treatment of uveal melanoma: the Memorial Sloan-Kettering Cancer Center experience. ASCO Meeting Abstracts. 2012;30(15_suppl):8549.Google Scholar
  76. 76.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17. doi: 10.1016/S0140-6736(14)60958-2.CrossRefPubMedGoogle Scholar
  77. 77.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi: 10.1056/NEJMoa1412082.CrossRefPubMedGoogle Scholar
  78. 78.
    Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84. doi: 10.1016/S1470-2045(15)70076-8.CrossRefPubMedGoogle Scholar
  79. 79.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi: 10.1056/NEJMoa1504030.CrossRefPubMedGoogle Scholar
  80. 80.
    Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Updated results from a phase III trial of nivolumab (NIVO) combined with ipilimumab (IPI) in treatment-naive patients (pts) with advanced melanoma (MEL) (CheckMate 067). ASCO Meeting Abstracts. 2016;34(15_suppl):9505.Google Scholar
  81. 81.
    Bol KF, Mensink HW, Aarntzen EH, Schreibelt G, Keunen JE, Coulie PG, et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. Am J Ophthalmol. 2014;158(5):939–47. doi: 10.1016/j.ajo.2014.07.014.CrossRefPubMedGoogle Scholar
  82. 82.
    van Dinten LC, Pul N, van Nieuwpoort AF, Out CJ, Jager MJ, van den Elsen PJ. Uveal and cutaneous melanoma: shared expression characteristics of melanoma-associated antigens. Invest Ophthalmol Vis Sci. 2005;46(1):24–30. doi: 10.1167/iovs.04-0961.CrossRefPubMedGoogle Scholar
  83. 83.
    • Middleton MR, Steven NM, Evans TJ, Infante JR, Sznol M, Mulatero C et al. Safety, pharmacokinetics and efficacy of IMCgp100, a first-in-class soluble TCR-antiCD3 bispecific t cell redirector with solid tumour activity: Results from the FIH study in melanoma. ASCO Meeting Abstracts. 2016;May 31, 2016(34(15_suppl): 3016). This abstract reported the interim results of the first-in-human trial of the bispecific biologic to gp100 and CD3 T cell (IMCgp100). There is an ongoing phase I/II clincial trial in uveal melanoma.Google Scholar
  84. 84.
    • Shoushtari AN, Evans J, Corrie P, Steven N, Sznol M, Mulatero C et al., editors. A phase I study of IMCgp100, a soluble HLA-A2 restricted gp100-specific T cell receptor-CD3 therapeutic with solid tumor activity in patients with advanced uveal melanoma. Late-breaking Abstract and Oral Presentation at the Society for Melanoma Research Congress.; 6–9 November, 2016; Boston, Massachusetts. This abstract reported results of the uveal melanoma cohort of patients enrolled on the first-in-human trial of IMCgp100, which demonstrated a response rate of 20%. There is an ongoing phase I/II clincial trial in uveal melanoma.Google Scholar
  85. 85.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99. doi: 10.1056/NEJMoa1406498.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8. doi: 10.1126/science.aaa1348.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. doi: 10.1038/nature12477.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A, Desjardins L, et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov. 2013;3(10):1122–9. doi: 10.1158/2159-8290.CD-13-0330.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Field MG, Durante MA, Decatur CL, Tarlan B, Oelschlager KM, Stone JF, et al. Epigenetic reprogramming and aberrant expression of PRAME are associated with increased metastatic risk in class 1 and class 2 uveal melanomas. Oncotarget. 2016; doi: 10.18632/oncotarget.10962.
  90. 90.
    • Field MG, Decatur CL, Kurtenbach S, Gezgin G, van der Velden PA, Jager MJ, et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2016;22(5):1234–42. doi: 10.1158/1078-0432.CCR-15-2071. This study identified PRAME as an independent prognostic marker in primary uveal melanoma, and also discusses its potential role as a biomarker and target for immunotherapy in uveal melanoma.CrossRefGoogle Scholar
  91. 91.
    Chang A, Dao T, Scott A, Dubrovsky L, Liu C, Scheinberg DA. A therapeutic TCR mimic monoclonal antibody for intracellular PRAME protein in leukemias. Blood. 2015;126(23):2527.Google Scholar
  92. 92.
    Amir AL, van der Steen DM, van Loenen MM, Hagedoorn RS, de Boer R, Kester MD, et al. PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(17):5615–25. doi: 10.1158/1078-0432.CCR-11-1066.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kimberly M. Komatsubara
    • 1
  • Richard D. Carvajal
    • 1
  1. 1.Division of Hematology/OncologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations