Current Oncology Reports

, 19:13 | Cite as

Mechanisms of Therapeutic Resistance in Prostate Cancer

  • Mary Nakazawa
  • Channing Paller
  • Natasha Kyprianou
Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Genitourinary Cancers

Abstract

Prostate cancer is the second leading cause of cancer deaths in the USA. The challenge in managing castration-resistant prostate cancer (CRPC) stems not from the lack of therapeutic options but from the limited duration of clinical and survival benefit offered by treatments in this setting due to primary and acquired resistance. The remarkable molecular heterogeneity and tumor adaptability in advanced prostate cancer necessitate optimization of such treatment strategies. While the future of CRPC management will involve newer targeted therapies in deliberately biomarker-selected patients, interventions using current approaches may exhibit improved clinical benefit if employed in the context of optimal sequencing and combinations. This review outlines our current understanding of mechanisms of therapeutic resistance in progression to and after the development of castration resistance, highlighting targetable and reversible mechanisms of resistance.

Keywords

Therapeutic resistance Prostate cancer Castration-resistant prostate cancer 

Abbreviations

ADT

Androgen deprivation therapy

CRPC

Castration-resistant prostate cancer

EMT

Epithelial-mesenchymal transition

MET

Mesenchymal-epithelial transition

ECM

Extracellular matrix

TGF-β

Transforming growth factor β

LBD

Ligand binding domain

AR

Androgen Receptor

PTEN

Phosphatase and tensin homolog deleted on chromosome ten

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Huggins C, Stevens Jr RE, Hodges CV. Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch Surg. 1941;43:209–23.CrossRefGoogle Scholar
  3. 3.
    Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA. 2005;294:238–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Harris WP, Mostaghel EA, Nelson PS, Montgomery B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol. 2009;6:76–85.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995;332:1393–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Higano CS, Crawford ED. New and emerging agents for the treatment of castration-resistant prostate cancer. Urol Oncol. 2011;29:S1–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS, et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 2001;61:4315–9.PubMedGoogle Scholar
  8. 8.
    de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Scher HI, Fizazi K, Saad F, Taplin M-E, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Halabi S, Lin C-Y, Kelly WK, Fizazi KS, Moul JW, Kaplan EB, et al. Updated prognostic model for predicting overall survival in first-line chemotherapy for patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2014;32:671–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376:1147–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Valenca LB, Sweeney CJ, Pomerantz MM. Sequencing current therapies in the treatment of metastatic prostate cancer. Cancer Treat Rev. 41:332–40.Google Scholar
  16. 16.
    Sartor O, Gillessen S. Treatment sequencing in metastatic castrate-resistant prostate cancer. Asian Journal of Andrology. 2014;16:426–31.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    van Soest RJ, de Morree ES, Kweldam CF, de Ridder CM, Wiemer EA, Mathijssen RH, et al. Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel, in castration-resistant prostate cancer. Eur Urol. 2015;67:981–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Azad AA, Eigl BJ, Murray RN, Kollmannsberger C, Chi KN. Efficacy of enzalutamide following abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer patients. Eur Urol. 2015;67:23–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang T, Dhawan MS, Healy P, George DJ, Harrison MR, Oldan J, et al. Exploring the clinical benefit of docetaxel or enzalutamide after disease progression during abiraterone acetate and prednisone treatment in men with metastatic castration-resistant prostate cancer. Clinical Genitourinary Cancer. 2015;13:392–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Paller CJ, Antonarakis ES. Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. Clinical Advances in Hematology & Oncology: H&O. 2013;11:14–23.Google Scholar
  21. 21.
    Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW, et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst. 1999;91:1869–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Yun EJ, Zhou J, Lin CJ, Hernandez E, Fazli L, Gleave M, et al. Targeting cancer stem cells in castration-resistant prostate cancer. Clinical Cancer Research. 2016;22:670–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005;23:8253–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 1995;9:401–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 1997;57:314–9.PubMedGoogle Scholar
  26. 26.
    Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res. 1999;59:803–6.PubMedGoogle Scholar
  27. 27.
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Rodriguez-Vida A, Bianchini D, Van Hemelrijck M, Hughes S, Malik Z, Powles T, et al. Is there an antiandrogen withdrawal syndrome with enzalutamide? BJU Int. 2015;115:373–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M, et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 2003;63:149–53.PubMedGoogle Scholar
  30. 30.
    Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem. 2005;280:37747–54.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci U S A. 2005;102:6201–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 2000;6:703–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 138:245–56.Google Scholar
  34. 34.
    Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate-resistance and novel therapeutic approaches. Oncogene. 2013;32:5501–11.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L, et al. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res. 2008;68:6762–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, et al. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol. 2009;175:489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T, et al. NF-kappaB gene signature predicts prostate cancer progression. Cancer Res. 2014;74:2763–72.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mulholland David J, Tran Linh M, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19:792–804.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian Journal of Andrology. 2014;16:378–86.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mithal P, Allott E, Gerber L, Reid J, Welbourn W, Tikishvili E, et al. PTEN loss in biopsy tissue predicts poor clinical outcomes in prostate cancer. Int J Urol. 2014;21:1209–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 1994;54:5474–8.PubMedGoogle Scholar
  43. 43.
    Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28:778–808.PubMedCrossRefGoogle Scholar
  44. 44.
    Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther. 2013;140:223–38.PubMedCrossRefGoogle Scholar
  45. 45.
    Yeh S, Miyamoto H, Shima H, Chang C. From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci U S A. 1998;95:5527–32.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ni L, Yang CS, Gioeli D, Frierson H, Toft DO, Paschal BM. FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol. 2010;30:1243–53.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Groner Anna C, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell. 29:846–58.Google Scholar
  48. 48.
    Suzman DL, Antonarakis ES. Does degree of androgen suppression matter in hormone-sensitive. Journal of Clinical Oncology. 2015;33:1098–100.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nishiyama T, Hashimoto Y, Takahashi K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. American Association for Cancer Research. 2004;10:7121–6.Google Scholar
  50. 50.
    Mohler JL, Gregory CW, Ford 3rd OH, Kim D, Weaver CM, Petrusz P, et al. The androgen axis in recurrent prostate cancer. Clinical Cancer Research. 2004;10:440–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clinical Cancer Research. 2005;11:4653–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Chang K, Ercole CE, Sharifi N. Androgen metabolism in prostate cancer: from molecular mechanisms to clinical consequences. Br J Cancer. 2014;111:1249–54.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–54.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66:2815–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J, et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell. 2013;154:1074–84.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhu H, Garcia JA. Targeting the adrenal gland in castration-resistant prostate cancer: a case for orteronel, a selective CYP-17 17,20-lyase inhibitor. Curr Oncol Rep. 2013;15:105–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 2008;68:6407–15.PubMedCrossRefGoogle Scholar
  58. 58.
    Corn PG. The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development. Cancer Manag Res. 2012;4:183–93.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sun Y, Wang B-E, Leong KG, Yue P, Li L, Jhunjhunwala S, et al. Androgen deprivation causes epithelial–mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 2012;72:527–36.PubMedCrossRefGoogle Scholar
  60. 60.
    Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhu M-L, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J. 2010;24:769–77.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ouyang G, Wang Z, Fang X, Liu J, Yang CJ. Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cellular and Molecular Life Sciences: CMLS. 2010;67:2605–18.PubMedCrossRefGoogle Scholar
  64. 64.
    van der Pluijm G. Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone. 2011;48:37–43.PubMedCrossRefGoogle Scholar
  65. 65.
    Nakazawa M, Kyprianou N. Epithelial-mesenchymal-transition regulators in prostate cancer: androgens and beyond. J Steroid Biochem Mol Biol. 2016;166:84–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Jaggi M, Nazemi T, Abrahams NA, Baker JJ, Galich A, Smith LM, et al. N-cadherin switching occurs in high Gleason grade prostate cancer. Prostate. 2006;66:193–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13:7003–11.PubMedCrossRefGoogle Scholar
  68. 68.
    Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Frontiers in Oncology. 2014;4Google Scholar
  69. 69.
    Kyprianou N. Molecular exploitation of apoptosis pathways in prostate cancer: World Scientific; 2012.Google Scholar
  70. 70.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 144:646–74.Google Scholar
  71. 71.
    Zielinski RR, Eigl BJ, Chi KN. Targeting the apoptosis pathway in prostate cancer. Cancer Journal. 2013;19:79–89.CrossRefGoogle Scholar
  72. 72.
    Denmeade SR, Lin XS, Isaacs JT. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate. 1996;28:251–65.PubMedCrossRefGoogle Scholar
  73. 73.
    Isaacs JT. Apoptosis: translating theory to therapy for prostate cancer. J Natl Cancer Inst. 2000;92:1367–9.PubMedCrossRefGoogle Scholar
  74. 74.
    McKenzie S, Kyprianou N. Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem. 2006;97:18–32.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kajiwara T, Takeuchi T, Ueki T, Moriyama N, Ueki K, Kakizoe T, et al. Effect of Bcl-2 overexpression in human prostate cancer cells in vitro and in vivo. Int J Urol. 1999;6:520–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clinical Cancer Research. 2009;15:1126–32.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Rennebeck G, Martelli M, Kyprianou N. Anoikis and survival connections in the tumor microenvironment: is there a role in prostate cancer metastasis? Cancer Res. 2005;65:11230–5.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Zheng DQ, Woodard AS, Fornaro M, Tallini G, Languino LR. Prostatic carcinoma cell migration via alpha(v)beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res. 1999;59:1655–64.PubMedGoogle Scholar
  80. 80.
    •• Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 2013;3:1030–43. The first evidence to suggest that the AR mutation F876L confers agonist properties to enzalutamide. While several activating mutations have been identified in the context of first-generation antiandrogens, this is the first mutation to be identified in a second-generation antiandrogen. PubMedCrossRefGoogle Scholar
  81. 81.
    Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J, et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 2016;17.Google Scholar
  82. 82.
    Nadiminty N, Tummala R, Liu C, Yang J, Lou W, Evans CP, et al. NF-kappaB2/p52 induces resistance to enzalutamide in prostate cancer: role of androgen receptor and its variants. Mol Cancer Ther. 2013;12:1629–37.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    •• Antonarakis ES, Lu C, Luber B, et al. ANdrogen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncology. 2015;1:582–91. This follow-up study showed that the presence of AR-V7 does not predict a response to taxane chemotherapies, challenging the predictive value of AR-V7 as a treatment selection biomarker for therapeutic resistance to non-antiandrogen treatments in CRPC. PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    •• Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38. Clinical evidence defining the association of AR splice variant-7 (AR-V7) with therapeutic resistance to abiraterone and enzalutamide in men with CRPC. PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.Google Scholar
  86. 86.
    Thadani-Mulero M, Nanus DM, Giannakakou P. Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res. 2012;72:4611–5.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zhu ML, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N. Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res. 2010;70:7992–8002.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lu Q, Luduena RF. Removal of beta III isotype enhances taxol induced microtubule assembly. Cell Struct Funct. 1993;18:173–82.PubMedCrossRefGoogle Scholar
  89. 89.
    Duran GE, Wang YC, Francisco EB, Rose JC, Martinez FJ, Coller J, et al. Mechanisms of resistance to cabazitaxel. Mol Cancer Ther. 2015;14:193–201.PubMedCrossRefGoogle Scholar
  90. 90.
    Puhr M, Hoefer J, Schafer G, Erb HH, Oh SJ, Klocker H, et al. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol. 2012;181:2188–201.PubMedCrossRefGoogle Scholar
  91. 91.
    Paller CJ, Antonarakis ES. Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer. Drug Design, Development and Therapy. 2011;5:117–24.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Nakazawa M, Antonarakis ES, Luo J. Androgen receptor splice variants in the era of enzalutamide and abiraterone. Hormones & Cancer. 2014;5:265–73.CrossRefGoogle Scholar
  93. 93.
    Dehm SM, Tindall DJ. Alternatively spliced androgen receptor variants. Endocrine-Related Cancer. 2011;18:R183–96.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69:16–22.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, et al. A novel androgen receptor splice variant is upregulated during prostate cancer progression and promotes androgen-depletion-resistant growth. Cancer Res. 2009;69:2305–13.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hu R, Isaacs WB, Luo J. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate. 2011;71:1656–67.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 2013;73:483–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clinical Cancer Research. 2011;17:5913–25.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Carlin BI, Andriole GL. The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer. 2000;88:2989–94.PubMedCrossRefGoogle Scholar
  100. 100.
    Logothetis CJ, Lin S-H. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005;5:21–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Oefelein MG, Ricchiuti V, Conrad W, Resnick MI. Skeletal fractures negatively correlate with overall survival in men with prostate cancer. J Urol. 2002;168:1005–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Halabi S, Vogelzang NJ, Kornblith AB, Ou SS, Kantoff PW, Dawson NA, et al. Pain predicts overall survival in men with metastatic castration-refractory prostate cancer. Journal of Clinical Oncology. 2008;26:2544–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 2012;72:2473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Smith MR, Coleman RE, Klotz L, Pittman K, Milecki P, Ng S, et al. Denosumab for the prevention of skeletal complications in metastatic castration-resistant prostate cancer: comparison of skeletal-related events and symptomatic skeletal events. Ann Oncol. 2015;26:368–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379:39–46.PubMedCrossRefGoogle Scholar
  106. 106.
    Chu GCY, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocrine-related cancer. 2014;21:311–26.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    El-Amm J, Aragon-Ching JB. Targeting bone metastases in metastatic castration-resistant prostate cancer. Clinical Medicine Insights Oncology. 2016;10:11–9.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Ning Y-M, Brave M, Maher VE, Zhang L, Tang S, Sridhara R, et al. U.S. Food and Drug Administration approval summary: enzalutamide for the treatment of patients with chemotherapy-naïve metastatic castration-resistant prostate cancer. Oncologist. 2015;20:960–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375:1437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Buttigliero C, Tucci M, Bertaglia V, Vignani F, Bironzo P, Di Maio M, et al. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat Rev. 2015;41:884–92.PubMedCrossRefGoogle Scholar
  111. 111.
    Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 2013;3:1020–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Arora Vivek K, Schenkein E, Murali R, Subudhi Sumit K, Wongvipat J, Balbas Minna D, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155:1309–22.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S, et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. Journal of Clinical Oncology. 2008;26:4563–71.PubMedCrossRefGoogle Scholar
  114. 114.
    Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.PubMedCrossRefGoogle Scholar
  115. 115.
    Attard G, Reid AH, Auchus RJ, Hughes BA, Cassidy AM, Thompson E, et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J Clin Endocrinol Metab. 2012;97:507–16.PubMedCrossRefGoogle Scholar
  116. 116.
    •• Carreira S, Romanel A, Goodall J, Grist E, Ferraldeschi R, Miranda S, et al. Tumor clone dynamics in lethal prostate cancer. Sci Transl Med. 2014;6:254ra125. A critical study revealing the complexity of therapeutically resistant clones in CRPC associated with regional and temporal heterogeneity, which can be monitored by sequential plasma and tumor biopsies to target lethal disease. PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Drake JM, Paull EO, Graham NA, Lee JK, Smith BA, Titz B, et al. Phosphoproteome integration reveals patient-specific networks in prostate cancer. Cell. 166:1041–54.Google Scholar
  118. 118.
    •• Sweeney CJ, Chen Y-H, Carducci M, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373:737–46. Shows a significant overall survival benefit in the addition of docetaxel to first-line ADT in metastatic hormone-sensitive prostate cancer, supporting the importance of targeting androgen sensitive and not CRPC by taxane chemotherapy to overcome cross-resistance. PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    •• James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77. Shows a significant overall survival benefit in the addition of docetaxel to first-line ADT in metastatic hormone-sensitive prostate cancer, supporting the importance of targeting androgen sensitive and not CRPC by taxane chemotherapy to overcome cross-resistance. PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Petrylak DP, Tangen CM, Hussain MHA, Lara PNJ, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–20.PubMedCrossRefGoogle Scholar
  121. 121.
    Pienta KJ. Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Seminars in Oncology; 2001: Elsevier; 2001. p. 3–7.Google Scholar
  122. 122.
    Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65.PubMedCrossRefGoogle Scholar
  123. 123.
    Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011;71:6019–29.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    O’Neill AJ, Prencipe M, Dowling C, Fan Y, Mulrane L, Gallagher WM, et al. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol Cancer. 2011;10:1–13.CrossRefGoogle Scholar
  125. 125.
    Terry S, Ploussard G, Allory Y, Nicolaiew N, Boissiere-Michot F, Maille P, et al. Increased expression of class III beta-tubulin in castration-resistant human prostate cancer. Br J Cancer. 2009;101:951–6.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Ploussard G, Terry S, Maillé P, Allory Y, Sirab N, Kheuang L, et al. Class III β-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res. 2010;70:9253–64.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Martin SK, Kyprianou N. Chapter three—Exploitation of the androgen receptor to overcome taxane resistance in advanced prostate ancer. In: Paul BF, Kenneth DT, eds. Advances in cancer research. Academic; 2015. p. 123–58.Google Scholar
  128. 128.
    Nakazawa M, Lu C, Chen Y, Paller CJ, Carducci MA, Eisenberger MA, et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Annals of Oncology. 2015;26:1859–65.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Martin SK, Pu H, Penticuff JC, Cao Z, Horbinski C, Kyprianou N. Multinucleation and mesenchymal-to-epithelial transition alleviate resistance to combined cabazitaxel and antiandrogen therapy in advanced prostate cancer. Cancer Res. 2015.Google Scholar
  130. 130.
    Martin SK, Banuelos CA, Sadar MD, Kyprianou N. N-terminal targeting of androgen receptor variant enhances response of castration resistant prostate cancer to taxane chemotherapy. Mol Oncol. 2015;9:628–39.CrossRefGoogle Scholar
  131. 131.
    Wyatt AW, Mo F, Wang Y, Collins CC. The diverse heterogeneity of molecular alterations in prostate cancer identified through next-generation sequencing. Asian Journal of Andrology. 2013;15:301–8.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discovery. 2016;6:479–91.PubMedCrossRefGoogle Scholar
  133. 133.
    Small EJ, Lance RS, Gardner TA, Karsh LI, Fong L, McCoy C, et al. A randomized phase II trial of sipuleucel-T with concurrent versus sequential abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer. American Association for Cancer Research. 2015;21:3862–9.Google Scholar
  134. 134.
    Paller CJ, Bradbury PA, Ivy SP, Seymour L, LoRusso PM, Baker L, et al. Design of phase I combination trials: recommendations of the Clinical Trial Design Task Force of the NCI Investigational Drug Steering Committee. Clinical Cancer Research. 2014;20:4210–7.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med.0:null.Google Scholar
  137. 137.
    Cao Z, Kyprianou N. Mechanisms navigating the TGF-β pathway in prostate cancer. Asian Journal of Urology. 2015;2:11–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mary Nakazawa
    • 1
  • Channing Paller
    • 2
  • Natasha Kyprianou
    • 1
  1. 1.Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer BiologyUniversity of Kentucky College of MedicineLexingtonUSA
  2. 2.The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations