Advertisement

Current Oncology Reports

, 18:4 | Cite as

Unraveling Myelodysplastic Syndromes: Current Knowledge and Future Directions

  • Ali N. Chamseddine
  • Elias Jabbour
  • Hagop M. Kantarjian
  • Zachary S. Bohannan
  • Guillermo Garcia-ManeroEmail author
Leukemia (A Aguayo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Leukemia

Abstract

Myelodysplastic syndromes (MDS) affect more than 30,000 patients in the USA per year, most of whom are elderly, and these diseases are associated with dismal prognoses. The main features of MDS are ineffective hematopoiesis and aberrant myeloid differentiation. Furthermore, MDS are heterogeneous, both clinically and molecularly. This heterogeneity and the frequent occurrence of age-related comorbidities make the management of these diseases challenging. In fact, there have been no new drug approvals for MDS in the USA in the last 9 years, and few currently available investigational drugs are likely to be approved in the near future. Novel targeted treatment based on better understanding of the pathogenesis of MDS is needed to maximize patient outcomes. Here, we discuss new insights into diagnostic accuracy, prognostic assessment, pathogenic mechanisms, and effective treatments for MDS.

Keywords

MDS diagnosis MDS treatment MDS etiology 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ali N. Chamseddine, Elias Jabbour, Hagop M. Kantarjian, Zachary S. Bohannan, and Guillermo Garcia-Manero declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. 1.
    Dayyani F, Conley AP, Strom SS, Stevenson W, Cortes JE, Borthakur G, et al. Cause of death in patients with lower-risk myelodysplastic syndrome. Cancer. 2010;116(9):2174–9.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Brunning RD, Orazi A, Germing U, Le Beau MM, Porwit A, Baumann I. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. Myelodysplastic syndromes/neoplasms. Lyon: IARC Press; 2008.Google Scholar
  3. 3.
    Parmentier S, Schetelig J, Lorenz K, Kramer M, Ireland R, Schuler U, et al. Assessment of dysplastic hematopoiesis: lessons from healthy bone marrow donors. Haematologica. 2012;97(5):723–30.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Garcia-Manero G. Myelodysplastic syndromes: 2015 update on diagnosis, risk-stratification and management. Am J Hematol. 2015;90(9):831–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(5):754–62.CrossRefGoogle Scholar
  6. 6.
    Valent P, Horny HP, Bennett JM, Fonatsch C, Germing U, Greenberg P, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res. 2007;31(6):727–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Fong T, Vij R, Vijayan A, DiPersio J, Blinder M. Copper deficiency: an important consideration in the differential diagnosis of myelodysplastic syndrome. Haematologica. 2007;92(10):1429–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51(2):189–99.PubMedCrossRefGoogle Scholar
  9. 9.
    Brunning RD, Bennett J, Flandrin G, Matutes E, Head D, Vardiman JW. Myelodysplastic syndromes. Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. Lyon, France: IARC Press; 2001.Google Scholar
  10. 10.
    Naqvi K, Jabbour E, Bueso-Ramos C, Pierce S, Borthakur G, Estrov Z, et al. Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood. 2011;118(17):4690–3.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943–64.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011;118(14):3765–76.PubMedCrossRefGoogle Scholar
  13. 13.
    List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.PubMedGoogle Scholar
  15. 15.
    Schanz J, Tuchler H, Sole F, Mallo M, Luno E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(8):820–9.CrossRefGoogle Scholar
  16. 16.
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Voso MT, Fenu S, Latagliata R, Buccisano F, Piciocchi A, Aloe-Spiriti MA, et al. Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO Prognostic Scoring System: validation by the Gruppo Romano Mielodisplasie Italian Regional Database. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(21):2671–7.CrossRefGoogle Scholar
  18. 18.
    Lamarque M, Raynaud S, Itzykson R, Thepot S, Quesnel B, Dreyfus F, et al. The revised IPSS is a powerful tool to evaluate the outcome of MDS patients treated with azacitidine: the GFM experience. Blood. 2012;120(25):5084–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Kantarjian H, O’Brien S, Ravandi F, Cortes J, Shan J, Bennett JM, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351–61.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Garcia-Manero G, Shan J, Faderl S, Cortes J, Ravandi F, Borthakur G, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22(3):538–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Goldberg SL, Chen E, Corral M, Guo A, Mody-Patel N, Pecora AL, et al. Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(17):2847–52.CrossRefGoogle Scholar
  22. 22.
    Naqvi K, Garcia-Manero G, Sardesai S, Oh J, Vigil CE, Pierce S, et al. Association of comorbidities with overall survival in myelodysplastic syndrome: development of a prognostic model. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(16):2240–6.CrossRefGoogle Scholar
  23. 23.
    Della Porta MG, Malcovati L, Strupp C, Ambaglio I, Kuendgen A, Zipperer E, et al. Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. Haematologica. 2011;96(3):441–9.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Daver N, Naqvi K, Jabbour E, Kadia T, DiNardo C, Cardenas-Turanzas M, et al. Impact of comorbidities by ACE-27 in the revised-IPSS for patients with myelodysplastic syndromes. Am J Hematol. 2014;89(5):509–16.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(5):504–15.CrossRefGoogle Scholar
  26. 26.
    Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25(7):1147–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Steensma DP. Historical perspectives on myelodysplastic syndromes. Leuk Res. 2012;36(12):1441–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Sekeres MA. The epidemiology of myelodysplastic syndromes. Hematol/Oncol Clin N Am. 2010;24(2):287–94.CrossRefGoogle Scholar
  32. 32.
    Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood. 2000;95(11):3273–9.PubMedGoogle Scholar
  33. 33.
    Lobe I, Rigal-Huguet F, Vekhoff A, Desablens B, Bordessoule D, Mounier C, et al. Myelodysplastic syndrome after acute promyelocytic leukemia: the European APL group experience. Leukemia. 2003;17(8):1600–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Kristinsson SY, Bjorkholm M, Hultcrantz M, Derolf AR, Landgren O, Goldin LR. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(21):2897–903.CrossRefGoogle Scholar
  35. 35.
    Alter BP. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol. 2014;27(3-4):214–21.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Chen B, Zhao WL, Jin J, Xue YQ, Cheng X, Chen XT, et al. Clinical and cytogenetic features of 508 Chinese patients with myelodysplastic syndrome and comparison with those in Western countries. Leukemia. 2005;19(5):767–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Ross ME, Wakefield J, Davis S, De Roos AJ. Spatial clustering of myelodysplastic syndromes (MDS) in the Seattle-Puget Sound region of Washington State. Cancer Causes Control : CCC. 2010;21(6):829–38.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Liu B, Kerath SM, Sekeres MA, Fryzek JP, Sreekantaiah C, Mason CR, et al. Myelodysplastic syndromes spatial clusters in disease etiology and outcome. Leukemia Lymphoma. 2015;10:1–26.Google Scholar
  39. 39.
    Bennett JM, Komrokji RS. The myelodysplastic syndromes: diagnosis, molecular biology and risk assessment. Hematology. 2005;10 Suppl 1:258–69.PubMedCrossRefGoogle Scholar
  40. 40.
    Thys RG, Lehman CE, Pierce LC, Wang YH. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells. Mutat Res. 2015;779:86–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Behrens A, van Deursen JM, Rudolph KL, Schumacher B. Impact of genomic damage and ageing on stem cell function. Nat Cell Biol. 2014;16(3):201–7.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ganan-Gomez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 2015;29(7):1458–69.PubMedCrossRefGoogle Scholar
  43. 43.
    Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013;13(5):376–89.PubMedCrossRefGoogle Scholar
  44. 44.
    Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer. 2012;12(12):849–59.PubMedCrossRefGoogle Scholar
  45. 45.
    Genga KR, Filho FD, Ferreira FV, de Sousa JC, Studart FS, Magalhaes SM, et al. Proteins of the mitotic checkpoint and spindle are related to chromosomal instability and unfavourable prognosis in patients with myelodysplastic syndrome. J Clin Pathol. 2015;68(5):381–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Shetty V, Hussaini S, Broady-Robinson L, Allampallam K, Mundle S, Borok R, et al. Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates. Blood. 2000;96(4):1388–92.PubMedGoogle Scholar
  47. 47.
    Parker JE, Mufti GJ. Ineffective haemopoiesis and apoptosis in myelodysplastic syndromes. Br J Haematol. 1998;101(2):220–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Shimazaki K, Ohshima K, Suzumiya J, Kawasaki C, Kikuchi M. Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes. Br J Haematol. 2000;110(3):584–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Boudard D, Vasselon C, Bertheas MF, Jaubert J, Mounier C, Reynaud J, et al. Expression and prognostic significance of Bcl-2 family proteins in myelodysplastic syndromes. Am J Hematol. 2002;70(2):115–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Rollison DE, Epling-Burnette PK, Park JY, Lee JH, Park H, Jonathan K, et al. Telomere length in myelodysplastic syndromes. Leukemia Lymphoma. 2011;52(8):1528–36.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Colla S, Ong DS, Ogoti Y, Marchesini M, Mistry NA, Clise-Dwyer K, et al. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome. Cancer Cell. 2015;27(5):644–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14(6):824–37.PubMedCrossRefGoogle Scholar
  54. 54.
    Garcia-Garcia A, de Castillejo CL, Mendez-Ferrer S. BMSCs and hematopoiesis. Immunology Letters. 2015 Jul 17.Google Scholar
  55. 55.
    Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852–7.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Tong H, Hu C, Zhuang Z, Wang L, Jin J. Hypoxia-inducible factor-1alpha expression indicates poor prognosis in myelodysplastic syndromes. Leukemia Lymphoma. 2012;53(12):2412–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Schinke C, Giricz O, Li W, Shastri A, Gordon S, Barreryo L, et al. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood. 2015;125(20):3144–52.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28(6):1280–8.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Orskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M, et al. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget. 2015;6(11):9612–26.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Kantarjian H, Giles F, List A, Lyons R, Sekeres MA, Pierce S, et al. The incidence and impact of thrombocytopenia in myelodysplastic syndromes. Cancer. 2007;109(9):1705–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Raza A, Reeves JA, Feldman EJ, Dewald GW, Bennett JM, Deeg HJ, et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood. 2008;111(1):86–93.PubMedCrossRefGoogle Scholar
  62. 62.
    Santini V, Almeida AM, Giagounidis A, Gropper S, Jonasova A, Vey N. Efficacy and safety of lenalidomide (LEN) versus placebo (PBO) in RBC-transfusion dependent (TD) patients (Pts) with IPSS low/intermediate (Int-1)-risk myelodysplastic syndromes (MDS) without del(5q) and unresponsive or refractory to erythropoiesis-stimulating agents (ESAs): results from a randomized phase 3 study (CC-5013-MDS-005). Blood. 2014;637:409.Google Scholar
  63. 63.
    Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.PubMedCrossRefGoogle Scholar
  64. 64.
    Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Lyons RM, Cosgriff TM, Modi SS, Gersh RH, Hainsworth JD, Cohn AL, et al. Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(11):1850–6.CrossRefGoogle Scholar
  66. 66.
    Garcia-Manero G, Gore SD, Cogle C, Ward R, Shi T, Macbeth KJ, et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(18):2521–7.CrossRefGoogle Scholar
  67. 67.
    Garcia-Manero G, Jabbour E, Borthakur G, Faderl S, Estrov Z, Yang H, et al. Randomized open-label phase II study of decitabine in patients with low- or intermediate-risk myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(20):2548–53.CrossRefGoogle Scholar
  68. 68.
    Mufti GJ, Potter V. Myelodysplastic syndromes: who and when in the course of disease to transplant. Hematol / Educ Program Am Soc Hematol Am Soc Hematol Educ Program. 2012;2012:49–55.Google Scholar
  69. 69.
    Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(10):2429–40.CrossRefGoogle Scholar
  70. 70.
    Steensma DP, Baer MR, Slack JL, Buckstein R, Godley LA, Garcia-Manero G, et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(23):3842–8.CrossRefGoogle Scholar
  71. 71.
    Lubbert M, Wijermans P, Kunzmann R, Verhoef G, Bosly A, Ravoet C, et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br J Haematol. 2001;114(2):349–57.PubMedCrossRefGoogle Scholar
  72. 72.
    Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, Cortes J, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109(1):52–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Steensma DP. Can hypomethylating agents provide a platform for curative therapy in myelodysplastic syndromes? Best Pract Res Clin Haematol. 2012;25(4):443–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Kadia T, Estrov Z, Ravandi F, Koller CA, Borthakur G, Jabbour E, et al. Long term follow-up and patterns of failure in patients with acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS) treated on studies combining a hypomethylating agent and the histone deacetylase inhibitor (HDACi) valproic acid. Blood. 2009;114:2074.Google Scholar
  75. 75.
    Wattel E, De Botton S, Luc Lai J, Preudhomme C, Lepelley P, Bauters F, et al. Long-term follow-up of de novo myelodysplastic syndromes treated with intensive chemotherapy: incidence of long-term survivors and outcome of partial responders. Br J Haematol. 1997;98(4):983–91.PubMedCrossRefGoogle Scholar
  76. 76.
    Beran M, Shen Y, Kantarjian H, O’Brien S, Koller CA, Giles FJ, et al. High-dose chemotherapy in high-risk myelodysplastic syndrome: covariate-adjusted comparison of five regimens. Cancer. 2001;92(8):1999–2015.PubMedCrossRefGoogle Scholar
  77. 77.
    Chang C, Storer BE, Scott BL, Bryant EM, Shulman HM, Flowers ME, et al. Hematopoietic cell transplantation in patients with myelodysplastic syndrome or acute myeloid leukemia arising from myelodysplastic syndrome: similar outcomes in patients with de novo disease and disease following prior therapy or antecedent hematologic disorders. Blood. 2007;110(4):1379–87.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Perez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104(2):579–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Koreth J, Pidala J, Perez WS, Deeg HJ, Garcia-Manero G, Malcovati L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(21):2662–70.CrossRefGoogle Scholar
  80. 80.
    Faderl S, Garcia-Manero G, Estrov Z, Ravandi F, Borthakur G, Cortes JE, et al. Oral clofarabine in the treatment of patients with higher-risk myelodysplastic syndrome. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(16):2755–60. doi: 10.1200/jco.2009.26.3509.CrossRefGoogle Scholar
  81. 81.
    Jabbour E, Daver N, Pemmaraju N, Jain N, Kadia TP, DiNardo CD, et al. Clofarabine plus low-dose cytarabine for the treatment of patients with higher-risk myelodysplastic syndromes (MDS) who have relapsed or are refractory to hypomethylating agent (HMA) therapy. Blood (ASH Ann Meet Abstr). 2014;114:534.Google Scholar
  82. 82.
    Roberts DA, Wadleigh M, McDonnell AM, DeAngelo DJ, Stone RM, Steensma DP. Low efficacy and high mortality associated with clofarabine treatment of relapsed/refractory acute myeloid leukemia and myelodysplastic syndromes. Leuk Res. 2014. doi: 10.1016/j.leukres.2014.11.031.PubMedGoogle Scholar
  83. 83.
    Buckley SA, Mawad R, Gooley TA, Becker PS, Sandhu V, Hendrie P, et al. A phase I/II study of oral clofarabine plus low-dose cytarabine in previously treated acute myeloid leukaemia and high-risk myelodysplastic syndrome patients at least 60 years of age. Br J Haematol. 2015;170(3):349–55. doi: 10.1111/bjh.13437.PubMedCrossRefGoogle Scholar
  84. 84.
    Garcia-Manero G, Goldberg S, Altman JK, Arellano M, Wetzler M, Seiter K, et al. A randomized phase II study of sapacitabine in MDS refractory to hypomethylating agents. Blood (ASH Ann Meet Abstr). 2013;114:2752.Google Scholar
  85. 85.•
    Garcia-Manero G, Savona M, Gore S, Cogle C, Conkling P, Beach CL, et al. Hematologic response to oral azacitidine (CC-486) in subjects with WHO-defined RAEB-1 or RAEB-2 myelodysplastic syndromes (MDS). Blood (ASH Ann Meet Abstr). 2013;114:1554. This study is the first to analyze extended oral azacitidine dosing schedules in higher-risk MDS (RAEB-1 or RAEB-2). 50% of treated patients achieved a hematologic response. Oral azacitidine is easy to administer and was generally well-tolerated.Google Scholar
  86. 86.••
    Kantarjian HM EJ YK, Kropf P, O’Connell C, Stock W, Tibes R, Rizzieri D, et al. First clinical results of a randomized phase 2 study of SGI-110, a novel subcutaneous (SQ) hypomethylating agent (HMA), in adult patients with acute myeloid leukemia (AML). Blood (ASH Ann Meet Abstr). 2013;122(21):497. These are the first results showing that an alternative hypomethylating agent has efficacy in MDS and AML (the phase 1 component included MDS patients).Google Scholar
  87. 87.
    Issa J, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C, et al. Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 2015. doi: 10.1016/S1470-2045(15)00038-8.PubMedGoogle Scholar
  88. 88.
    Cashen A, Juckett M, Jumonville A, Litzow M, Flynn PJ, Eckardt J, et al. Phase II study of the histone deacetylase inhibitor belinostat (PXD101) for the treatment of myelodysplastic syndrome (MDS). Ann Hematol. 2012;91(1):33–8. doi: 10.1007/s00277-011-1240-1.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Kirschbaum M, Gojo I, Goldberg SL, Bredeson C, Kujawski LA, Yang A, et al. A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. Br J Haematol. 2014. doi: 10.1111/bjh.13016.PubMedGoogle Scholar
  90. 90.••
    Prebet T, Sun Z, Figueroa ME, Ketterling R, Melnick A, Greenberg PL, et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(12):1242–8. doi: 10.1200/jco.2013.50.3102. Only 27 % of the patients had an ORR with entinostat, a HDAC inhibitor. This study should caution the use of this class of therapy in combination with azacitidine.CrossRefGoogle Scholar
  91. 91.
    Quintas-Cardama AKH, Ravandi F, Foudray C, Pemmaraju N, Kadia TM, Borthakur G, et al. Very high rates of clinical and cytogenetic response with the combination of the histone deacetylase inhibitor pracinostat (SB939) and 5-azacitidine in high-risk myelodysplastic syndrome. Blood (ASH Ann Meet Abstr). 2012;120:3821.Google Scholar
  92. 92.
    Tan P, Wei A, Mithraprabhu S, Cummings N, Liu HB, Perugini M, et al. Dual epigenetic targeting with panobinostat and azacitidine in acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood Cancer J. 2014;4, e170. doi: 10.1038/bcj.2013.68.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Finelli C, Follo MY, Stanzani M, Avanzini P, Bosi C, Castagnari B, et al. Addition of lenalidomide (LEN) to azacitidine (AZA) (combined vs sequential treatment) in high-risk myelodysplastic syndromes (MDS): a randomized phase II multicenter study. Blood Abstract 4648 ASH 2014 Annual Meeting 2014.Google Scholar
  94. 94.
    Sekeres MA, List AF, Cuthbertson D, Paquette R, Ganetzky R, Latham D, et al. Phase I combination trial of lenalidomide and azacitidine in patients with higher-risk myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(13):2253–8. doi: 10.1200/jco.2009.26.0745.CrossRefGoogle Scholar
  95. 95.
    Sekeres MA, Tiu RV, Komrokji R, Lancet J, Advani AS, Afable M, et al. Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood. 2012;120(25):4945–51. doi: 10.1182/blood-2012-06-434639.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.•
    Garcia-Manero G SM, List AF, Khoury HJ, Advani A, Jabbour E, Kantarjian HM, et al. Phase I dose escalation/expansion study of ARRY-614 in patients with IPSS low/Int-1 risk myelodysplastic syndromes. Blood 2013 ASH Annual Meeting Abstract 387. This data showed that ARRY-614, a dual inhibitor of p38 and Tie2, has clinical efficacy in lower-risk MDS. All responders had prior HMA therapy. Google Scholar
  97. 97.•
    Garcia-Manero G FP, Al-KaliA, et al. Randomized phase 3 study of intravenous rigosertib vs best supportive care (B) in higher-risk myelodysplastic syndrome (HR-MDS) patients (pts) after hypomethylating agent (HMA) failure—topline results. Blood Annual Meeting Abstracts 163. 2014. These results from a large phase III randomized trial, in patients after HMA failure, showed that there was no improvement of survival with rigosertib. Google Scholar
  98. 98.
    Raza A, Olnes MJ, Silverman LR, Wilhelm F. Final phase I/II results of rigosertib (ON 01910.Na) hematological effects in patients with myelodysplastic syndrome and correlation with overall survival. Blood (ASH Ann Meet Abstr). 2011;118:3822.Google Scholar
  99. 99.
    Komrokji RS, Raza A, Lancet JE, Ren C, Taft D, Maniar M, et al. Phase I clinical trial of oral rigosertib in patients with myelodysplastic syndromes. Br J Haematol. 2013;162(4):517–24. doi: 10.1111/bjh.12436.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Jabbour E, Kantarjian H, Ravandi F, Garcia-Manero G, Estrov Z, Verstovsek S, et al. A phase 1–2 study of a farnesyltransferase inhibitor, tipifarnib, combined with idarubicin and cytarabine for patients with newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndrome. Cancer. 2011;117(6):1236–44. doi: 10.1002/cncr.25575.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Fenaux P, Raza A, Mufti GJ, Aul C, Germing U, Kantarjian H, et al. A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood. 2007;109(10):4158–63. doi: 10.1182/blood-2006-07-035725.PubMedCrossRefGoogle Scholar
  102. 102.
    Feldman EJ, Cortes J, DeAngelo DJ, Holyoake T, Simonsson B, O’Brien SG, et al. On the use of lonafarnib in myelodysplastic syndrome and chronic myelomonocytic leukemia. Leukemia. 2008;22(9):1707–11. doi: 10.1038/leu.2008.156.PubMedCrossRefGoogle Scholar
  103. 103.
    Raza A, Galili N, Mulford D, Smith S, Brown G, Steensma D, et al. Phase 1 dose-ranging study of ezatiostat hydrochloride in combination with lenalidomide in patients with non-deletion (5q) low to intermediate-1 risk myelodysplastic syndrome (MDS). J Hematol Oncol. 2012;5:18. doi: 10.1186/1756-8722-5-18.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Goldberg S, Fenaux P, Craig M, Gyan E, Lister J, Kassis J, et al. An exploratory phase 2 study of investigational Aurora A kinase inhibitor alisertib (MLN8237) in acute myelogenous leukemia and myelodysplastic syndromes. Leuk Res Rep. 2014;3(2):58–61. doi: 10.1016/j.lrr.2014.06.003.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Beran M, Estey E, O’Brien SM, Giles FJ, Koller CA, Kornblau S, et al. Results of topotecan single-agent therapy in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Lymphoma. 1998;31:521–31.PubMedGoogle Scholar
  106. 106.
    Beran M, Estey E, O’Brien S, Cortes J. Topotecan and cytarabine is an active combination regimen in myelodysplastic syndromes and chronic myelomonocytic leukemia. J Clin Oncol. 1999;17:2819–29.PubMedGoogle Scholar
  107. 107.
    Weihrauch MR, Staib P, Seiberlich B, Hoffmann M, Diehl V, Tesch H. Phase I/II clinical study of topotecan and cytarabine in patients with myelodysplastic syndrome, chronic myelomonocytic leukemia and acute myeloid leukemia. Leuk Lymphoma. 2004;45:699–704.PubMedCrossRefGoogle Scholar
  108. 108.
    Raza A, Lisak L, Billmeier J, Pervaiz H, Mumtaz M, Gohar S, et al. Phase II study of topotecan and thalidomide in patients with high-risk myelodysplastic syndromes. Leuk Lymphoma. 2006;47:433–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ali N. Chamseddine
    • 1
  • Elias Jabbour
    • 1
  • Hagop M. Kantarjian
    • 1
  • Zachary S. Bohannan
    • 1
  • Guillermo Garcia-Manero
    • 1
    Email author
  1. 1.Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations