Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Current Status of Molecular Biomarkers in Endometrial Cancer


In spite of the high and increasing incidence of endometrial cancer, our current models for prediction of prognosis and even more treatment response are suboptimal, and molecular biomarkers to assist clinical decision making are needed. In this review an overview is given of the currently known as well as promising prognostic and predictive biomarkers in endometrial carcinoma. Key clinical challenges, where use of molecular biomarkers can meet clinical needs, are highlighted. The current status for the presently most promising prognostic and predictive biomarkers in endometrial carcinoma is reviewed. DNA ploidy, p53 status, hormone receptor level, HER2, stathmin, L1 cell adhesion molecule expression and other biomarkers are discussed in relation to the scientific robustness of various essential steps in biomarker development and (current) clinical applicability for individualizing treatment strategies. Tumour heterogeneity and its consequences for biomarker assessment and the importance of developing standardised tests for implementation are discussed. To improve the development and clinical uptake of biomarkers, several strategies are proposed.

This is a preview of subscription content, log in to check access.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Wright JD, Barrena Medel NI, Sehouli J, Fujiwara K, Herzog TJ. Contemporary management of endometrial cancer. Lancet. 2012;379(9823):1352–60. doi:10.1016/S0140-6736(12)60442-5.

  2. 2.

    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. doi:10.1016/S0140-6736(08)60269-X.

  3. 3.

    Webb PM. Obesity and gynecologic cancer etiology and survival. In: 2013 educational book. Alexandria: American Society of Clinical Oncology; 2013. doi:10.1200/EdBook_AM.2013.33.e222.

  4. 4.

    Duong LM, Wilson RJ, Ajani UA, Singh SD, Eheman CR. Trends in endometrial cancer incidence rates in the United States, 1999-2006. J Womens Health. 2011;20(8):1157–63. doi:10.1089/jwh.2010.2529.

  5. 5.

    Oza AM, Elit L, Tsao MS, Kamel-Reid S, Biagi J, Provencher DM, et al. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC Clinical Trials Group. J Clin Oncol. 2011;29(24):3278–85. doi:10.1200/JCO.2010.34.1578.

  6. 6.

    Salvesen HB, Haldorsen IS, Trovik J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 2012;13(8):e353–61. doi:10.1016/S1470-2045(12)70213-9.

  7. 7.

    Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.

  8. 8.

    Dedes KJ, Wetterskog D, Ashworth A, Kaye SB, Reis-Filho JS. Emerging therapeutic targets in endometrial cancer. Nat Rev Clin Oncol. 2011;8(5):261–71. doi:10.1038/nrclinonc.2010.216.

  9. 9.

    Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. doi:10.1067/mcp.2001.113989.

  10. 10.

    Trovik J, Mauland KK, Werner HM, Wik E, Helland H, Salvesen HB. Improved survival related to changes in endometrial cancer treatment, a 30-year population based perspective. Gynecol Oncol. 2012;125(2):381–7. doi:10.1016/j.ygyno.2012.01.050.

  11. 11.

    Pelikan HM, Trum JW, Bakers FC, Beets-Tan RG, Smits LJ, Kruitwagen RF. Diagnostic accuracy of preoperative tests for lymph node status in endometrial cancer: a systematic review. Cancer Imaging. 2013;13(3):314–22. doi:10.1102/1470-7330.2013.0032.

  12. 12.

    Yoon JH, Yoo SC, Kim WY, Chang SJ, Chang KH, Ryu HS. Para-aortic lymphadenectomy in the management of preoperative grade 1 endometrial cancer confined to the uterine corpus. Ann Surg Oncol. 2010;17(12):3234–40. doi:10.1245/s10434-010-1199-5.

  13. 13.

    Benedetti Panici P, Basile S, Maneschi F, Alberto Lissoni A, Signorelli M, Scambia G, et al. Systematic pelvic lymphadenectomy vs. no lymphadenectomy in early-stage endometrial carcinoma: randomized clinical trial. J Natl Cancer Inst. 2008;100(23):1707–16. doi:10.1093/jnci/djn397.

  14. 14.

    group As, Kitchener H, Swart AM, Qian Q, Amos C, Parmar MK. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet. 2009;373(9658):125–36. doi:10.1016/S0140-6736(08)61766-3.

  15. 15.

    May K, Bryant A, Dickinson HO, Kehoe S, Morrison J. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst Rev. 2010;1, CD007585. doi:10.1002/14651858.CD007585.pub2.

  16. 16.

    Abu-Rustum NR, Alektiar K, Iasonos A, Lev G, Sonoda Y, Aghajanian C, et al. The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center. Gynecol Oncol. 2006;103(2):714–8. doi:10.1016/j.ygyno.2006.03.055.

  17. 17.

    Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–4.

  18. 18.

    Abu-Rustum NR, Khoury-Collado F, Pandit-Taskar N, Soslow RA, Dao F, Sonoda Y, et al. Sentinel lymph node mapping for grade 1 endometrial cancer: is it the answer to the surgical staging dilemma? Gynecol Oncol. 2009;113(2):163–9. doi:10.1016/j.ygyno.2009.01.003.

  19. 19.

    Kim CH, Khoury-Collado F, Barber EL, Soslow RA, Makker V, Leitao Jr MM, et al. Sentinel lymph node mapping with pathologic ultrastaging: a valuable tool for assessing nodal metastasis in low-grade endometrial cancer with superficial myoinvasion. Gynecol Oncol. 2013;131(3):714–9. doi:10.1016/j.ygyno.2013.09.027.

  20. 20.

    Ballester M, Koskas M, Coutant C, Chereau E, Seror J, Rouzier R, et al. Does the use of the 2009 FIGO classification of endometrial cancer impact on indications of the sentinel node biopsy? BMC Cancer. 2010;10:465. doi:10.1186/1471-2407-10-465.

  21. 21.

    Mariani A, Sebo TJ, Katzmann JA, Roche PC, Keeney GL, Lesnick TG, et al. Endometrial cancer: can nodal status be predicted with curettage? Gynecol Oncol. 2005;96(3):594–600. doi:10.1016/j.ygyno.2004.11.030.

  22. 22.

    Steinbakk A, Malpica A, Slewa A, Skaland I, Gudlaugsson E, Janssen EA, et al. Biomarkers and microsatellite instability analysis of curettings can predict the behavior of FIGO stage I endometrial endometrioid adenocarcinoma. Mod Pathol. 2011;24(9):1262–71. doi:10.1038/modpathol.2011.75.

  23. 23.

    Trovik J, Wik E, Stefansson I, Carter SL, Beroukhim R, Oyan AM, et al. Stathmin is superior to AKT and phospho-AKT staining for the detection of phosphoinositide 3-kinase activation and aggressive endometrial cancer. Histopathology. 2010;57(4):641–6. doi:10.1111/j.1365-2559.2010.03661.x.

  24. 24.

    Trovik J, Wik E, Werner HM, Krakstad C, Helland H, Vandenput I, et al. Hormone receptor loss in endometrial carcinoma curettage predicts lymph node metastasis and poor outcome in prospective multicentre trial. Eur J Cancer. 2013;49(16):3431–41. doi:10.1016/j.ejca.2013.06.016.

  25. 25.

    Sood AK, Buller RE, Burger RA, Dawson JD, Sorosky JI, Berman M. Value of preoperative CA 125 level in the management of uterine cancer and prediction of clinical outcome. Obstet Gynecol. 1997;90(3):441–7.

  26. 26.

    Ambeba E, Linkov F. Advancements in the use of blood tests for cancer screening in women at high risk for endometrial and breast cancer. Future Oncol. 2011;7(12):1399–414. doi:10.2217/fon.11.127.

  27. 27.

    Antonsen SL, Hogdall E, Christensen IJ, Lydolph M, Tabor A, Loft Jakobsen A, et al. HE4 and CA125 levels in the preoperative assessment of endometrial cancer patients: a prospective multicenter study (ENDOMET). Acta Obstet Gynecol Scand. 2013;92(11):1313–22. doi:10.1111/aogs.12235.

  28. 28.

    Staff AC, Trovik J, Eriksson AG, Wik E, Wollert KC, Kempf T, et al. Elevated plasma growth differentiation factor-15 correlates with lymph node metastases and poor survival in endometrial cancer. Clin Cancer Res. 2011;17(14):4825–33. doi:10.1158/1078-0432.CCR-11-0715.

  29. 29.

    Alcazar JL, Jurado M. Three-dimensional ultrasound for assessing women with gynecological cancer: a systematic review. Gynecol Oncol. 2011;120(3):340–6. doi:10.1016/j.ygyno.2010.10.023.

  30. 30.

    Haldorsen IS, Berg A, Werner HM, Magnussen IJ, Helland H, Salvesen OO, et al. Magnetic resonance imaging performs better than endocervical curettage for preoperative prediction of cervical stromal invasion in endometrial carcinomas. Gynecol Oncol. 2012;126(3):413–8. doi:10.1016/j.ygyno.2012.05.009.

  31. 31.

    Haldorsen IS, Salvesen HB. Staging of endometrial carcinomas with MRI using traditional and novel MRI techniques. Clin Radiol. 2012;67(1):2–12. doi:10.1016/j.crad.2011.02.018.

  32. 32.

    Antonsen SL, Jensen LN, Loft A, Berthelsen AK, Costa J, Tabor A, et al. MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer - a multicenter prospective comparative study. Gynecol Oncol. 2013;128(2):300–8. doi:10.1016/j.ygyno.2012.11.025.

  33. 33.

    Engelsen IB, Stefansson IM, Akslen LA, Salvesen HB. GATA3 expression in estrogen receptor alpha-negative endometrial carcinomas identifies aggressive tumors with high proliferation and poor patient survival. Am J Obstet Gynecol. 2008;199(5):543.e1-7. doi:10.1016/j.ajog.2008.04.043.

  34. 34.

    Jongen V, Briet J, de Jong R, ten Hoor K, Boezen M, van der Zee A, et al. Expression of estrogen receptor-alpha and -beta and progesterone receptor-A and -B in a large cohort of patients with endometrioid endometrial cancer. Gynecol Oncol. 2009;112(3):537–42. doi:10.1016/j.ygyno.2008.10.032.

  35. 35.

    Engelsen IB, Stefansson I, Akslen LA, Salvesen HB. Pathologic expression of p53 or p16 in preoperative curettage specimens identifies high-risk endometrial carcinomas. Am J Obstet Gynecol. 2006;195(4):979–86. doi:10.1016/j.ajog.2006.02.045.

  36. 36.

    Matias-Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology. 2013;62(1):111–23. doi:10.1111/his.12053.

  37. 37.

    Garg K, Leitao Jr MM, Wynveen CA, Sica GL, Shia J, Shi W, et al. p53 overexpression in morphologically ambiguous endometrial carcinomas correlates with adverse clinical outcomes. Mod Pathol. 2010;23(1):80–92. doi:10.1038/modpathol.2009.153.

  38. 38.

    Pradhan M, Davidson B, Abeler VM, Danielsen HE, Trope CG, Kristensen GB, et al. DNA ploidy may be a prognostic marker in stage I and II serous adenocarcinoma of the endometrium. Virchows Arch. 2012;461(3):291–8. doi:10.1007/s00428-012-1275-2.

  39. 39.

    Suehiro Y, Okada T, Okada T, Anno K, Okayama N, Ueno K, et al. Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin Cancer Res. 2008;14(11):3354–61. doi:10.1158/1078-0432.CCR-07-4609.

  40. 40.

    Susini T, Amunni G, Molino C, Carriero C, Rapi S, Branconi F, et al. Ten-year results of a prospective study on the prognostic role of ploidy in endometrial carcinoma: dNA aneuploidy identifies high-risk cases among the so-called ‘low-risk’ patients with well and moderately differentiated tumors. Cancer. 2007;109(5):882–90. doi:10.1002/cncr.22465.

  41. 41.

    Wik E, Trovik J, Iversen OE, Engelsen IB, Stefansson IM, Vestrheim LC, et al. Deoxyribonucleic acid ploidy in endometrial carcinoma: a reproducible and valid prognostic marker in a routine diagnostic setting. Am J Obstet Gynecol. 2009;201(6):603.e1-7. doi:10.1016/j.ajog.2009.07.029.

  42. 42.

    Wik E, Raeder MB, Krakstad C, Trovik J, Birkeland E, Hoivik EA, et al. Lack of estrogen receptor-alpha is associated with epithelial-mesenchymal transition and PI3K alterations in endometrial carcinoma. Clin Cancer Res. 2013;19(5):1094–105. doi:10.1158/1078-0432.CCR-12-3039.

  43. 43.

    Mauland KK, Wik E, Salvesen HB. Clinical value of DNA content assessment in endometrial cancer. Cytom Part B. 2014;86(3):154–63. doi:10.1002/cyto.b.21164.

  44. 44.

    Risinger JI, Hayes K, Maxwell GL, Carney ME, Dodge RK, Barrett JC, et al. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998;4(12):3005–10.

  45. 45.•

    Krakstad C, Trovik J, Wik E, Engelsen IB, Werner HM, Birkeland E, et al. Loss of GPER identifies new targets for therapy among a subgroup of ERalpha-positive endometrial cancer patients with poor outcome. Br J Cancer. 2012;106(10):1682–8. doi:10.1038/bjc.2012.91. Evaluation of hormone receptor status can potentially improve patient selection for endocrine treatment in endometrial cancer. This study shows that G-protein-coupled OR, an alternative OR, predicts poor survival in an OR-positive subgroup. The significant increase in biomarker loss from primary to metastatic disease may be important.

  46. 46.

    Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A. 2009;106(12):4834–9. doi:10.1073/pnas.0806514106.

  47. 47.

    Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW. PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 2011;71(12):4061–7. doi:10.1158/0008-5472.CAN-11-0549.

  48. 48.

    Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011;1(2):170–85. doi:10.1158/2159-8290.CD-11-0039.

  49. 49.

    Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi:10.1038/nature12113.

  50. 50.

    Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000;88(4):814–24.

  51. 51.

    Basil JB, Goodfellow PJ, Rader JS, Mutch DG, Herzog TJ. Clinical significance of microsatellite instability in endometrial carcinoma. Cancer. 2000;89(8):1758–64.

  52. 52.

    Catasus L, Gallardo A, Cuatrecasas M, Prat J. Concomitant PI3K-AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis. Mod Pathol. 2009;22(4):522–9. doi:10.1038/modpathol.2009.5.

  53. 53.

    Morrison C, Zanagnolo V, Ramirez N, Cohn DE, Kelbick N, Copeland L, et al. HER-2 is an independent prognostic factor in endometrial cancer: association with outcome in a large cohort of surgically staged patients. J Clin Oncol. 2006;24(15):2376–85. doi:10.1200/JCO.2005.03.4827.

  54. 54.

    Tanaka Y, Terai Y, Kawaguchi H, Fujiwara S, Yoo S, Tsunetoh S, et al. Prognostic impact of EMT (epithelial-mesenchymal-transition)-related protein expression in endometrial cancer. Cancer Biol Ther. 2013;14(1):13–9. doi:10.4161/cbt.22625.

  55. 55.

    Yi TZ, Guo J, Zhou L, Chen X, Mi RR, Qu QX, et al. Prognostic value of E-cadherin expression and CDH1 promoter methylation in patients with endometrial carcinoma. Cancer Investig. 2011;29(1):86–92. doi:10.3109/07357907.2010.512603.

  56. 56.

    Dutt A, Salvesen HB, Chen TH, Ramos AH, Onofrio RC, Hatton C, et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci U S A. 2008;105(25):8713–7. doi:10.1073/pnas.0803379105.

  57. 57.

    Byron SA, Gartside M, Powell MA, Wellens CL, Gao F, Mutch DG, et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One. 2012;7(2):e30801. doi:10.1371/journal.pone.0030801.

  58. 58.

    Birkeland E, Wik E, Mjos S, Hoivik EA, Trovik J, Werner HM, et al. KRAS gene amplification and overexpression but not mutation associates with aggressive and metastatic endometrial cancer. Br J Cancer. 2012;107(12):1997–2004. doi:10.1038/bjc.2012.477.

  59. 59.

    Stefansson IM, Salvesen HB, Akslen LA. Prognostic impact of alterations in P-cadherin expression and related cell adhesion markers in endometrial cancer. J Clin Oncol. 2004;22(7):1242–52. doi:10.1200/JCO.2004.09.034.

  60. 60.

    Fadare O, Renshaw IL, Liang SX. Does the loss of ARID1A (BAF-250a) expression in endometrial clear cell carcinomas have any clinicopathologic significance? A pilot assessment. J Cancer. 2012;3:129–36. doi:10.7150/jca.4140.

  61. 61.

    Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33. doi:10.1002/path.2911.

  62. 62.

    Werner HM, Berg A, Wik E, Birkeland E, Krakstad C, Kusonmano K, et al. ARID1A loss is prevalent in endometrial hyperplasia with atypia and low-grade endometrioid carcinomas. Mod Pathol. 2013;26(3):428–34. doi:10.1038/modpathol.2012.174.

  63. 63.

    Trovik J, Wik E, Stefansson IM, Marcickiewicz J, Tingulstad S, Staff AC, et al. Stathmin overexpression identifies high-risk patients and lymph node metastasis in endometrial cancer. Clin Cancer Res. 2011;17(10):3368–77. doi:10.1158/1078-0432.CCR-10-2412.

  64. 64.•

    Zeimet AG, Reimer D, Huszar M, Winterhoff B, Puistola U, Azim SA, et al. L1CAM in early-stage type I endometrial cancer: results of a large multicenter evaluation. J Natl Cancer Inst. 2013;105(15):1142–50. doi:10.1093/jnci/djt144. Although only published recently and so far in only one study, L1 cell adhesion molecule seems a very promising prognostic biomarker that may help to select those type 1 stage 1 endometrial cancer patients who need adjuvant treatment. Validation studies, also focused on the biological rationale, are needed.

  65. 65.

    Brennan DJ, Hackethal A, Metcalf AM, Coward J, Ferguson K, Oehler MK, et al. Serum HE4 as a prognostic marker in endometrial cancer–a population based study. Gynecol Oncol. 2014;132(1):159–65. doi:10.1016/j.ygyno.2013.10.036.

  66. 66.

    Nicklin J, Janda M, Gebski V, Jobling T, Land R, Manolitsas T, et al. The utility of serum CA-125 in predicting extra-uterine disease in apparent early-stage endometrial cancer. Int J Cancer. 2012;131(4):885–90. doi:10.1002/ijc.26433.

  67. 67.

    Mutz-Dehbalaie I, Egle D, Fessler S, Hubalek M, Fiegl H, Marth C, et al. HE4 is an independent prognostic marker in endometrial cancer patients. Gynecol Oncol. 2012;126(2):186–91. doi:10.1016/j.ygyno.2012.04.022.

  68. 68.

    Zanotti L, Bignotti E, Calza S, Bandiera E, Ruggeri G, Galli C, et al. Human epididymis protein 4 as a serum marker for diagnosis of endometrial carcinoma and prediction of clinical outcome. Clin Chem Lab Med. 2012;50(12):2189–98. doi:10.1515/cclm-2011-0757.

  69. 69.

    Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312(5994):513–6.

  70. 70.

    Food and Drug Administration. Drugs. (2014).

  71. 71.

    DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25(2):209–16. doi:10.1200/JCO.2006.09.0803.

  72. 72.

    Dellinger TH, Monk BJ. Systemic therapy for recurrent endometrial cancer: a review of North American trials. Expert Rev Anticancer Ther. 2009;9(7):905–16. doi:10.1586/era.09.54.

  73. 73.

    Hudis CA. Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39–51. doi:10.1056/NEJMra043186.

  74. 74.

    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84. doi:10.1056/NEJMoa052122.

  75. 75.

    Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol. 2009;27(31):5175–81. doi:10.1200/JCO.2008.21.2514.

  76. 76.

    Lee Y, Shim HS, Park MS, Kim JH, Ha SJ, Kim SH, et al. High EGFR gene copy number and skin rash as predictive markers for EGFR tyrosine kinase inhibitors in patients with advanced squamous cell lung carcinoma. Clin Cancer Res. 2012;18(6):1760–8. doi:10.1158/1078-0432.CCR-11-2582.

  77. 77.

    Vandenput I, Trovik J, Leunen K, Wik E, Stefansson I, Akslen L, et al. Evolution in endometrial cancer: evidence from an immunohistochemical study. Int J Gynecol Cancer. 2011;21(2):316–22. doi:10.1097/IGC.0b013e31820575f5.

  78. 78.

    Decruze SB, Green JA. Hormone therapy in advanced and recurrent endometrial cancer: a systematic review. Int J Gynecol Cancer. 2007;17(5):964–78. doi:10.1111/j.1525-1438.2007.00897.x.

  79. 79.•

    Mackay HJ, Eisenhauer EA, Kamel-Reid S, Tsao M, Clarke B, Karakasis K, et al. Molecular determinants of outcome with mammalian target of rapamycin inhibition in endometrial cancer. Cancer. 2013. doi:10.1002/cncr.28414. No combination of biomarkers was found to be predictive of mammalian target of rapamycin inhibitor activity in this study using archival tissue from nearly 100 women with recurrent endometrial cancer. The authors call for caution in enriching trials for patients with certain biomarker characteristics.

  80. 80.

    Janku F, Wheler JJ, Westin SN, Moulder SL, Naing A, Tsimberidou AM, et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J Clin Oncol. 2012;30(8):777–82. doi:10.1200/JCO.2011.36.1196.

  81. 81.

    Werner HM, Trovik J, Halle MK, Wik E, Akslen LA, Birkeland E, et al. Stathmin protein level, a potential predictive marker for taxane treatment response in endometrial cancer. PLoS One. 2014;9(2):e90141. doi:10.1371/journal.pone.0090141.

  82. 82.

    Meyer LA, Slomovitz BM, Djordjevic B, Westin SN, Iglesias DA, Munsell MF, et al. The search continues: looking for predictive biomarkers for response to Mammalian target of rapamycin inhibition in endometrial cancer. Int Gynecol Cancer. 2014;24(4):713–7. doi:10.1097/IGC.0000000000000118.

  83. 83.

    Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM, et al. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2010;116(1):15–20. doi:10.1016/j.ygyno.2009.09.025.

  84. 84.

    National Institutes of Health. NCT01237067. 2014. Accessed Apr 2014.

  85. 85.

    Nout RA, Bosse T, Creutzberg CL, Jurgenliemk-Schulz IM, Jobsen JJ, Lutgens LC, et al. Improved risk assessment of endometrial cancer by combined analysis of MSI, PI3K-AKT, Wnt/β-catenin and P53 pathway activation. Gynecol Oncol. 2012;126(3):466–73. doi:10.1016/j.ygyno.2012.05.012.

  86. 86.

    Alkushi A, Clarke BA, Akbari M, Makretsov N, Lim P, Miller D, et al. Identification of prognostically relevant and reproducible subsets of endometrial adenocarcinoma based on clustering analysis of immunostaining data. Mod Pathol. 2007;20(11):1156–65. doi:10.1038/modpathol.3800950.

  87. 87.

    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi:10.1056/NEJMoa1113205.

  88. 88.

    Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82. doi:10.1158/0008-5472.CAN-12-2217.

  89. 89.

    Buza N, Hui P. Marked heterogeneity of HER2/NEU gene amplification in endometrial serous carcinoma. Genes Chromosomes Cancer. 2013. doi:10.1002/gcc.22113.

  90. 90.

    Soslow RA, Wethington SL, Cesari M, Chiappetta D, Olvera N, Shia J, et al. Clinicopathologic analysis of matched primary and recurrent endometrial carcinoma. Am J Surg Pathol. 2012;36(12):1771–81. doi:10.1097/PAS.0b013e318273591a.

  91. 91.

    Thompson AM, Jordan LB, Quinlan P, Anderson E, Skene A, Dewar JA, et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res. 2010;12(6):R92. doi:10.1186/bcr2771.

  92. 92.

    Arslan C, Sari E, Aksoy S, Altundag K. Variation in hormone receptor and HER-2 status between primary and metastatic breast cancer: review of the literature. Expert Opin Ther Targets. 2011;15(1):21–30. doi:10.1517/14656566.2011.537260.

  93. 93.

    Khasraw M, Brogi E, Seidman AD. The need to examine metastatic tissue at the time of progression of breast cancer: is re-biopsy a necessity or a luxury? Curr Oncol Rep. 2011;13(1):17–25. doi:10.1007/s11912-010-0137-9.

  94. 94.

    Simmons C, Miller N, Geddie W, Gianfelice D, Oldfield M, Dranitsaris G, et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol. 2009;20(9):1499–504. doi:10.1093/annonc/mdp028.

  95. 95.

    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25(33):5287–312. doi:10.1200/JCO.2007.14.2364.

  96. 96.

    Lindstrom LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol. 2012;30(21):2601–8. doi:10.1200/JCO.2011.37.2482.

  97. 97.

    Amir E, Clemons M, Purdie CA, Miller N, Quinlan P, Geddie W, et al. Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat Rev. 2012;38(6):708–14. doi:10.1016/j.ctrv.2011.11.006.

  98. 98.

    Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C, et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol. 2012;30(6):587–92. doi:10.1200/JCO.2010.33.5232.

  99. 99.

    Parkinson DR, McCormack RT, Keating SM, Gutman SI, Hamilton SR, Mansfield EA, et al. Evidence of clinical utility: an unmet need in molecular diagnostics for patients with cancer. Clin Cancer Res. 2014;20(6):1428–44. doi:10.1158/1078-0432.CCR-13-2961.

  100. 100.

    Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013;12(5):358–69. doi:10.1038/nrd3979.

  101. 101.

    Dancey JE, Dobbin KK, Groshen S, Jessup JM, Hruszkewycz AH, Koehler M, et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res. 2010;16(6):1745–55. doi:10.1158/1078-0432.CCR-09-2167.

  102. 102.

    Duffy MJ, Crown J. Companion biomarkers: paving the pathway to personalized treatment for cancer. Clin Chem. 2013;59(10):1447–56. doi:10.1373/clinchem.2012.200477.

  103. 103.

    Ioannidis JP, Panagiotou OA. Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA. 2011;305(21):2200–10. doi:10.1001/jama.2011.713.

  104. 104.

    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97(16):1180–4. doi:10.1093/jnci/dji237.

  105. 105.

    Werner HM, Mills GB, Ram PT. Cancer systems biology: a peek into the future of patient care? Nat Rev Clin Oncol. 2014;11(3):167–76. doi:10.1038/nrclinonc.2014.6.

  106. 106.•

    Haldorsen IS, Stefansson I, Gruner R, Husby JA, Magnussen IJ, Werner HM, et al. Increased microvascular proliferation is negatively correlated to tumour blood flow and is associated with unfavourable outcome in endometrial carcinomas. Br J Cancer. 2014;110(1):107–14. doi:10.1038/bjc.2013.694. Functional imaging results exemplify the potential of advanced imaging to non-invasively and preoperatively identify a patient group with aggressive disease and poor survival. The results are well correlated with known immunohistochemistry parameters reflecting microvascular proliferation.

  107. 107.

    Sleijfer S, Bogaerts J, Siu LL. Designing transformative clinical trials in the cancer genome era. J Clin Oncol. 2013;31(15):1834–41. doi:10.1200/JCO.2012.45.3639.

  108. 108.

    de Bono JS, Ashworth A. Translating cancer research into targeted therapeutics. Nature. 2010;467(7315):543–9. doi:10.1038/nature09339.

  109. 109.

    Schilsky RL, Doroshow JH, Leblanc M, Conley BA. Development and use of integral assays in clinical trials. Clin Cancer Res. 2012;18(6):1540–6. doi:10.1158/1078-0432.CCR-11-2202.

Download references


The European Network for Individualized Treatment in Endometrial Carcinoma (ENITEC) and the European Society of Gynaecological Oncology (ESGO) are thanked for their support.

Compliance with Ethics Guidelines

Conflict of Interest

The authors report the following conflicts:

The University of Bergen/Haukeland University Hospital/Dana Farber Cancer Institute/Harvard University through Bergen Teknologioverføring AS (BTO) have an interest in some aspects relating to prognostic markers for endometrial cancer through (pending) intellectual property rights (US 12/962,946 and US 13/991,947).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Correspondence to H. M. J. Werner.

Additional information

This article is part of the Topical Collection on Gynecologic Cancers

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werner, H.M.J., Salvesen, H.B. Current Status of Molecular Biomarkers in Endometrial Cancer. Curr Oncol Rep 16, 403 (2014).

Download citation


  • Endometrial cancer
  • Molecular biomarkers
  • Prognostic biomarkers
  • Predictive biomarkers
  • Biomarker validation
  • Clinical utility
  • Gynaecologic cancer