Current Oncology Reports

, Volume 15, Issue 4, pp 317–324 | Cite as

The Adolescent and Young Adult with Cancer: State of the Art-- Acute Leukemias

  • M. Monica Gramatges
  • Karen R. Rabin
Pediatric Oncology (S Epelman, Section Editor)


Despite survival gains over the past several decades, adolescent and young adult (AYA) patients with both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) demonstrate a consistent survival disadvantage. The AYA population exhibits unique disease and host characteristics, and further study is needed to improve their outcomes. This review will highlight distinctive aspects of disease biology in this population, as well as salient treatment-related toxicities including osteonecrosis, pancreatitis, thromboembolism, hyperglycemia, and infections. The impact of obesity and differences in drug metabolism and chemotherapy resistance will also be discussed, as well as optimal treatment considerations for the AYA population.


Acute lymphoblastic leukemia Acute myeloid leukemia Adolescent Young adult Treatment-related toxicity Osteonecrosis Pancreatitis Thromboembolism Hyperglycemia Obesity Adherence 



This work was supported by a Baylor College of Medicine Chao Physician-Scientist Award and a National Cancer Institute grant 1K23CA158148-01A1 to MMG; and by the Kurt Groten Family Research Scholars’ Program, the Gillson Longenbaugh Foundation, and a St. Baldrick’s Scholar Award to KRR.

Compliance with Ethics Guidelines

Conflict of Interest

M. Monica Gramatges declares no potential conflict of interest.

Karen R. Rabin declares no potential conflict of interest.

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. J Clin Oncol. 2012;30(14):1663–9. doi: 10.1200/JCO.2011.37.8018.Google Scholar
  2. 2.
    Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood. 2012;119(1):34–43. doi: 10.1182/blood-2011-04-347872.PubMedCrossRefGoogle Scholar
  3. 3.
    Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013. doi: 10.1016/S0140-6736(12)62187-4.PubMedGoogle Scholar
  4. 4.
    Pui CH, Schrappe M, Ribeiro RC, Niemeyer CM. Childhood and adolescent lymphoid and myeloid leukemia. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2004:118-45. doi: 10.1182/asheducation-2004.1.118.
  5. 5.
    Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1(1):75–87.PubMedCrossRefGoogle Scholar
  6. 6.
    Asnafi V, Beldjord K, Libura M, Villarese P, Millien C, Ballerini P, et al. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood. 2004;104(13):4173–80. doi: 10.1182/blood-2003-11-3944.PubMedCrossRefGoogle Scholar
  7. 7.
    Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43. doi: 10.1016/S0140-6736(08)60457-2.PubMedCrossRefGoogle Scholar
  8. 8.
    Chiaretti S, Messina M, Tavolaro S, Foa R. Myeloid/T-cell acute lymphoblastic leukemia in children and adults. Pediatr Rep. 2011;3 Suppl 2:e3. doi: 10.4081/pr.2011.s2.e3.PubMedGoogle Scholar
  9. 9.
    Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187–205. doi: 10.1182/blood-2012-03-362608.PubMedCrossRefGoogle Scholar
  10. 10.
    Radhi M, Meshinchi S, Gamis A. Prognostic factors in pediatric acute myeloid leukemia. Curr Hematol Malig Rep. 2010;5(4):200–6. doi: 10.1007/s11899-010-0060-z.PubMedCrossRefGoogle Scholar
  11. 11.
    Pollard JA, Alonzo TA, Gerbing RB, Ho PA, Zeng R, Ravindranath Y, et al. Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. Blood. 2010;115(12):2372–9. doi: 10.1182/blood-2009-09-241075.PubMedCrossRefGoogle Scholar
  12. 12.
    Ito C, Evans WE, McNinch L, Coustan-Smith E, Mahmoud H, Pui CH, et al. Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. J Clin Oncol. 1996;14(8):2370–6.PubMedGoogle Scholar
  13. 13.
    Bostrom BC, Sensel MR, Sather HN, Gaynon PS, La MK, Johnston K, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood. 2003;101(10):3809–17. doi: 10.1182/blood-2002-08-2454.PubMedCrossRefGoogle Scholar
  14. 14.
    Mitchell CD, Richards SM, Kinsey SE, Lilleyman J, Vora A, Eden TO. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol. 2005;129(6):734–45. doi: 10.1111/j.1365-2141.2005.05509.x.PubMedCrossRefGoogle Scholar
  15. 15.
    Schrappe M, Zimmerman M, Moricke A, Mann G, Valsecchi M, Bartram C. Dexamethasone in induction can eliminate one third of all relapses in childhood acute lymphoblastic leukemia (ALL): results of an international randomized trial in 3655 patients (Trial AIEOP-BFM ALL 2000). Blood. 2008;112:7.CrossRefGoogle Scholar
  16. 16.
    Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5(2):202–7.PubMedGoogle Scholar
  17. 17.
    Meikle AW, Tyler FH. Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med. 1977;63(2):200–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Mattano Jr LA, Sather HN, Trigg ME, Nachman JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol. 2000;18(18):3262–72.PubMedGoogle Scholar
  19. 19.
    Strauss AJ, Su JT, Dalton VM, Gelber RD, Sallan SE, Silverman LB. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol. 2001;19(12):3066–72.PubMedGoogle Scholar
  20. 20.
    Mattano L, Nachman J, Devidas M, Winick N, Raetz E, Carroll W. Increased incidence of osteonecrosis (ON) with a dexamethasone (DEX) induction for high risk acute lymphoblastic leukemia (HR-ALL): a report from the Children’s Oncology Group (COG). Blood. 2008;112:898.Google Scholar
  21. 21.
    Vrooman LM, Stevenson KE, Supko JG, O'Brien J, Dahlberg SE, Asselin BL, et al. Postinduction dexamethasone and individualized dosing of Escherichia Coli L-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study--Dana-Farber Cancer Institute ALL Consortium Protocol 00-0. J Clin Oncol. 2013;31(9):1202–10. doi: 10.1200/JCO.2012.43.2070.
  22. 22.
    Teuffel O, Kuster SP, Hunger SP, Conter V, Hitzler J, Ethier MC, et al. Dexamethasone versus prednisone for induction therapy in childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Leukemia. 2011;25(8):1232–8. doi: 10.1038/leu.2011.84.PubMedCrossRefGoogle Scholar
  23. 23.
    •• Nachman JB, La MK, Hunger SP, Heerema NA, Gaynon PS, Hastings C, et al. Young adults with acute lymphoblastic leukemia have an excellent outcome with chemotherapy alone and benefit from intensive postinduction treatment: a report from the children's oncology group. J Clin Oncol. 2009;27(31):5189–94. doi: 10.1200/JCO.2008.20.8959. Results of a randomized phase III trial of 262 young adults with ALL demonstrate the benefit of early post-induction intensification therapy. The authors argue that the excellent outcomes on this trial support the use of chemotherapy rather than allogeneic stem cell transplant as front-line therapy for young adults with ALL.
  24. 24.
    Arico M, Boccalatte MF, Silvestri D, Barisone E, Messina C, Chiesa R, et al. Osteonecrosis: An emerging complication of intensive chemotherapy for childhood acute lymphoblastic leukemia. Haematologica. 2003;88(7):747–53.PubMedGoogle Scholar
  25. 25.
    Pui CH, Pei D, Campana D, Bowman WP, Sandlund JT, Kaste SC, et al. Improved prognosis for older adolescents with acute lymphoblastic leukemia. J Clin Oncol. 2011;29(4):386–91. doi: 10.1200/JCO.2010.32.0325.Google Scholar
  26. 26.
    Relling MV, Yang W, Das S, Cook EH, Rosner GL, Neel M, et al. Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol. 2004;22(19):3930–6. doi: 10.1200/JCO.2004.11.020.Google Scholar
  27. 27.
    Gong LL, Fang LH, Wang HY, Peng JH, Si K, Zhu J, et al. Genetic risk factors for glucocorticoid-induced osteonecrosis: a meta-analysis. Steroids. 2013;78(4):401–8. doi: 10.1016/j.steroids.2013.01.004.PubMedCrossRefGoogle Scholar
  28. 28.
    Niinimaki RA, Harila-Saari AH, Jartti AE, Seuri RM, Riikonen PV, Paakko EL, et al. High body mass index increases the risk for osteonecrosis in children with acute lymphoblastic leukemia. J Clin Oncol. 2007;25(12):1498–504. doi: 10.1200/JCO.2006.06.2539.Google Scholar
  29. 29.
    Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, Cheng C, et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;117(8):2340–7. doi: 10.1182/blood-2010-10-311969. quiz 556.PubMedCrossRefGoogle Scholar
  30. 30.
    Bond J, Adams S, Richards S, Vora A, Mitchell C, Goulden N. Polymorphism in the PAI-1 (SERPINE1) gene and the risk of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;118(9):2632–3. doi: 10.1182/blood-2011-05-355206.PubMedCrossRefGoogle Scholar
  31. 31.
    French D, Hamilton LH, Mattano Jr LA, Sather HN, Devidas M, Nachman JB, et al. A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood. 2008;111(9):4496–9. doi: 10.1182/blood-2007-11-123885.PubMedCrossRefGoogle Scholar
  32. 32.
    Mattano Jr LA, Devidas M, Nachman JB, Sather HN, Hunger SP, Steinherz PG, et al. Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncol. 2012;13(9):906–15. doi: 10.1016/S1470-2045(12)70274-7.PubMedCrossRefGoogle Scholar
  33. 33.
    Leblicq C, Laverdiere C, Decarie JC, Delisle JF, Isler MH, Moghrabi A, et al. Effectiveness of pamidronate as treatment of symptomatic osteonecrosis occurring in children treated for acute lymphoblastic leukemia. Pediatric blood & cancer. 2013;60(5):741–7. doi: 10.1002/pbc.24313.CrossRefGoogle Scholar
  34. 34.
    Winick N, Salzer W, Devidas M. Dexamethasone (DEX) versus prednisone (PRED) during induction for children with high risk acute lymphoblastic leukemia (HR-ALL): a report from the Children’s Oncology Group study AALL0232. Programs/Proceedings American Society of Clinical Oncology. 2011Google Scholar
  35. 35.
    Kearney SL, Dahlberg SE, Levy DE, Voss SD, Sallan SE, Silverman LB. Clinical course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatric blood & cancer. 2009;53(2):162–7. doi: 10.1002/pbc.22076.CrossRefGoogle Scholar
  36. 36.
    Knoderer HM, Robarge J, Flockhart DA. Predicting asparaginase-associated pancreatitis. Pediatric blood & cancer. 2007;49(5):634–9. doi: 10.1002/pbc.21037.CrossRefGoogle Scholar
  37. 37.
    Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood. 2001;97(5):1211–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Athale UH, Siciliano SA, Crowther M, Barr RD, Chan AK. Thromboembolism in children with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute protocols: effect of age and risk stratification of disease. Br J Haematol. 2005;129(6):803–10. doi: 10.1111/j.1365-2141.2005.05528.x.PubMedCrossRefGoogle Scholar
  39. 39.
    Roberson JR, Spraker HL, Shelso J, Zhou Y, Inaba H, Metzger ML, et al. Clinical consequences of hyperglycemia during remission induction therapy for pediatric acute lymphoblastic leukemia. Leukemia. 2009;23(2):245–50. doi: 10.1038/leu.2008.289.PubMedCrossRefGoogle Scholar
  40. 40.
    Pui CH, Burghen GA, Bowman WP, Aur RJ. Risk factors for hyperglycemia in children with leukemia receiving L-asparaginase and prednisone. J Pediatr. 1981;99(1):46–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Sonabend RY, McKay SV, Okcu MF, Yan J, Haymond MW, Margolin JF. Hyperglycemia during induction therapy is associated with increased infectious complications in childhood acute lymphocytic leukemia. Pediatr Blood Cancer. 2008;51(3):387–92. doi: 10.1002/pbc.21624.PubMedCrossRefGoogle Scholar
  42. 42.
    Roberson JR, Raju S, Shelso J, Pui CH, Howard SC. Diabetic ketoacidosis during therapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50(6):1207–12. doi: 10.1002/pbc.21505.PubMedCrossRefGoogle Scholar
  43. 43.
    • Butturini AM, Dorey FJ, Lange BJ, Henry DW, Gaynon PS, Fu C, et al. Obesity and outcome in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2007;25(15):2063–9. doi: 10.1200/JCO.2006.07.7792. Retrospective analysis of children with newly diagnosed ALL demonstrates an increased risk of relapse associated with obesity, with greatest risk in patients over 10 years of age.
  44. 44.
    Hijiya N, Panetta JC, Zhou Y, Kyzer EP, Howard SC, Jeha S, et al. Body mass index does not influence pharmacokinetics or outcome of treatment in children with acute lymphoblastic leukemia. Blood. 2006;108(13):3997–4002. doi: 10.1182/blood-2006-05-024414.PubMedCrossRefGoogle Scholar
  45. 45.
    Lange BJ, Gerbing RB, Feusner J, Skolnik J, Sacks N, Smith FO, et al. Mortality in overweight and underweight children with acute myeloid leukemia. JAMA: J Am Med Assoc. 2005;293(2):203–11. doi: 10.1001/jama.293.2.203.CrossRefGoogle Scholar
  46. 46.
    Rogers PC, Meacham LR, Oeffinger KC, Henry DW, Lange BJ. Obesity in pediatric oncology. Pediatr Blood Cancer. 2005;45(7):881–91. doi: 10.1002/pbc.20451.PubMedCrossRefGoogle Scholar
  47. 47.
    Zuccaro P, Guandalini S, Pacifici R, Pichini S, Di Martino L, Guiducci M, et al. Fat body mass and pharmacokinetics of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Ther Drug Monit. 1991;13(1):37–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Rask C, Albertioni F, Bentzen SM, Schroeder H, Peterson C. Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia–a logistic regression analysis. Acta Oncol. 1998;37(3):277–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Donelli MG, Zucchetti M, Robatto A, Perlangeli V, D'Incalci M, Masera G, et al. Pharmacokinetics of HD-MTX in infants, children, and adolescents with non-B acute lymphoblastic leukemia. Med Pediatr Oncol. 1995;24(3):154–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Aumente D, Buelga DS, Lukas JC, Gomez P, Torres A, Garcia MJ. Population pharmacokinetics of high-dose methotrexate in children with acute lymphoblastic leukaemia. Clin Pharmacokinet. 2006;45(12):1227–38.PubMedCrossRefGoogle Scholar
  51. 51.
    Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67. doi: 10.1056/NEJMra035092.PubMedCrossRefGoogle Scholar
  52. 52.
    • Veal GJ, Hartford CM, Stewart CF. Clinical pharmacology in the adolescent oncology patient. J Clin Oncol. 2010;28(32):4790–9. doi: 10.1200/JCO.2010.28.3473. Comprehensive review of developmental physiology and behavioral characteristics that affect pharmacology of anti-cancer agents in the AYA population.
  53. 53.
    Styczynski J, Pieters R, Huismans DR, Schuurhuis GJ, Wysocki M, Veerman AJ. In vitro drug resistance profiles of adult versus childhood acute lymphoblastic leukaemia. Br J Haematol. 2000;110(4):813–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Maung ZT, Reid MM, Matheson E, Taylor PR, Proctor SJ, Hall AG. Corticosteroid resistance is increased in lymphoblasts from adults compared with children: preliminary results of in vitro drug sensitivity study in adults with acute lymphoblastic leukaemia. Br J Haematol. 1995;91(1):93–100.PubMedCrossRefGoogle Scholar
  55. 55.
    Pulte D, Gondos A, Brenner H. Trends in 5- and 10-year survival after diagnosis with childhood hematologic malignancies in the United States, 1990-2004. J Natl Cancer Inst. 2008;100(18):1301–9. doi: 10.1093/jnci/djn276.PubMedCrossRefGoogle Scholar
  56. 56.
    Barry E, DeAngelo DJ, Neuberg D, Stevenson K, Loh ML, Asselin BL, et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols. J Clin Oncol. 2007;25(7):813–9. doi: 10.1200/JCO.2006.08.6397.Google Scholar
  57. 57.
    Ribera JM, Oriol A, Sanz MA, Tormo M, Fernandez-Abellan P, del Potro E, et al. Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Espanol de Tratamiento en Hematologia pediatric-based protocol ALL-96. J Clin Oncol. 2008;26(11):1843–9. doi: 10.1200/JCO.2007.13.7265.
  58. 58.
    Truong TH, Beyene J, Hitzler J, Abla O, Maloney AM, Weitzman S, et al. Features at presentation predict children with acute lymphoblastic leukemia at low risk for tumor lysis syndrome. Cancer. 2007;110(8):1832–9. doi: 10.1002/cncr.22990.PubMedCrossRefGoogle Scholar
  59. 59.
    Rubnitz JE, Lensing S, Zhou Y, Sandlund JT, Razzouk BI, Ribeiro RC, et al. Death during induction therapy and first remission of acute leukemia in childhood: the St. Jude experience. Cancer. 2004;101(7):1677–84. doi: 10.1002/cncr.20532.PubMedCrossRefGoogle Scholar
  60. 60.
    Riley LC, Hann IM, Wheatley K, Stevens RF. Treatment-related deaths during induction and first remission of acute myeloid leukaemia in children treated on the Tenth Medical Research Council acute myeloid leukaemia trial (MRC AML10). The MCR Childhood Leukaemia Working Party. Br J Haematol. 1999;106(2):436–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Creutzig U, Ritter J, Zimmermann M, Reinhardt D, Hermann J, Berthold F, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Munster 93. J Clin Oncol. 2001;19(10):2705–13.PubMedGoogle Scholar
  62. 62.
    •• Razzouk BI, Estey E, Pounds S, Lensing S, Pierce S, Brandt M, et al. Impact of age on outcome of pediatric acute myeloid leukemia: a report from 2 institutions. Cancer. 2006;106(11):2495–502. doi: 10.1002/cncr.21892. Retrospective review of 424 children with AML treated during two treatment eras (1983-1989 and 1990-2002) demonstrates an increased risk of adverse events associated with older age in the recent era, and an increased risk of death associated with increasing age in both treatment eras.PubMedCrossRefGoogle Scholar
  63. 63.
    Creutzig U, Zimmermann M, Reinhardt D, Dworzak M, Stary J, Lehrnbecher T. Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98. J Clin Oncol. 2004;22(21):4384–93. doi: 10.1200/JCO.2004.01.191.Google Scholar
  64. 64.
    Sung L, Lange BJ, Gerbing RB, Alonzo TA, Feusner J. Microbiologically documented infections and infection-related mortality in children with acute myeloid leukemia. Blood. 2007;110(10):3532–9. doi: 10.1182/blood-2007-05-091942.PubMedCrossRefGoogle Scholar
  65. 65.
    Sung L, Gamis A, Alonzo TA, Buxton A, Britton K, Deswarte-Wallace J, et al. Infections and association with different intensity of chemotherapy in children with acute myeloid leukemia. Cancer. 2009;115(5):1100–8. doi: 10.1002/cncr.24107.PubMedCrossRefGoogle Scholar
  66. 66.
    Gramatges MM, Winter SS. Recommendations for broader coverage antifungal prophylaxis in childhood acute myeloid leukemia: ASH evidence-based review 2011. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2011;2011:374-6. doi:10.1182/asheducation-2011.1.374Google Scholar
  67. 67.
    Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56–93. doi: 10.1093/cid/cir073.PubMedCrossRefGoogle Scholar
  68. 68.
    Schafer ES, Hunger SP. Optimal therapy for acute lymphoblastic leukemia in adolescents and young adults. Nat Rev Clin Oncol. 2011;8(7):417–24. doi: 10.1038/nrclinonc.2011.77.PubMedCrossRefGoogle Scholar
  69. 69.
    Wood WA, Lee SJ. Malignant hematologic diseases in adolescents and young adults. Blood. 2011;117(22):5803–15. doi: 10.1182/blood-2010-12-283093.PubMedCrossRefGoogle Scholar
  70. 70.
    Bhatia S, Landier W, Shangguan M, Hageman L, Schaible AN, Carter AR, et al. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and non-Hispanic white children with acute lymphoblastic leukemia: a report from the children's oncology group. J Clin Oncol. 2012;30(17):2094–101. doi: 10.1200/JCO.2011.38.9924.Google Scholar
  71. 71.
    • Butow P, Palmer S, Pai A, Goodenough B, Luckett T, King M. Review of adherence-related issues in adolescents and young adults with cancer. J Clin Oncol. 2010;28(32):4800–9. doi: 10.1200/JCO.2009.22.2802. Review of issues and clinical challenges of nonadherence in AYA patients with cancer. While evidence-based research is lacking, this review provides a valuable outline of strategies for assessment and management of nonadherence, and areas where future research is needed.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pediatric Hematology/Oncology, Baylor College of MedicineTexas Children’s Cancer CenterHoustonUSA

Personalised recommendations