Current Oncology Reports

, Volume 15, Issue 1, pp 33–46 | Cite as

Tumor Prognostic Factors and the Challenge of Developing Predictive Factors

Neuro-oncology (MR Gilbert, Section Editor)

Abstract

Histopathologic classification has been widely used to type and grade primary brain tumors. However, the diverse behavior of primary brain tumors has made prognostic determinations based purely on clinical and histopathologic variables difficult. Recent advances in the molecular genetics of brain tumors have helped to explain the witnessed heterogeneity regarding response to treatment, time to progression, and overall survival. Additionally, there has been interest in identifying predictive factors to help direct patients to therapeutic interventions specific to their tumor and patient biology. Further identification of both prognostic and predictive biomarkers will make possible better patient stratification and individualization of treatment.

Keywords

Genomic profiling Brain tumors Biomarkers Glioma Glioblastoma Medulloblastoma Ependymoma Meningioma Microarray Predictive makers Prognostic markers DNA methylation Copy number variation 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Eheman C, Henley SJ, Ballard-Barbash R, Jacobs EJ, Schymura MJ, Noone AM, et al. Annual report to the nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer. 2012;118(9):2338–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Bradford BU, et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods. 2005;2(5):351–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Wen PY, Fine HA, Black PM, Shrieve DC, Alexander 3rd E, Loeffler JS. High-grade astrocytomas. Neurol Clin. 1995;13(4):875–900.PubMedGoogle Scholar
  4. 4.
    Curran Jr WJ, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993;85(9):704–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Li J, Wang M, Won M, Shaw EG, Coughlin C, Curran Jr WJ, et al. Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys. 2011;81(3):623–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Hornick JL, Fletcher CD. The role of KIT in the management of patients with gastrointestinal stromal tumors. Hum Pathol. 2007;38(5):679–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Ichimura K, Ohgaki H, Kleihues P, Collins VP. Molecular pathogenesis of astrocytic tumours. J Neurooncol. 2004;70(2):137–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol. 2004;14(2):121–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Riemenschneider MJ, Knobbe CB, Reifenberger G. Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer. 2003;104(6):752–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Eley GD, Reiter JL, Pandita A, Park S, Jenkins RB, Maihle NJ, et al. A chromosomal region 7p11.2 transcript map: its development and application to the study of EGFR amplicons in glioblastoma. Neuro Oncol. 2002;4(2):86–94.PubMedGoogle Scholar
  13. 13.
    Rasheed BK, McLendon RE, Friedman HS, Friedman AH, Fuchs HE, Bigner DD, et al. Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene. 1995;10(11):2243–6.PubMedGoogle Scholar
  14. 14.
    Kitange G, Misra A, Law M, Passe S, Kollmeyer TM, Maurer M, et al. Chromosomal imbalances detected by array comparative genomic hybridization in human oligodendrogliomas and mixed oligoastrocytomas. Genes Chromosomes Cancer. 2005;42(1):68–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol. 1994;145(5):1175–90.PubMedGoogle Scholar
  16. 16.
    Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol. 2003;62(2):111–26.PubMedGoogle Scholar
  17. 17.
    Hartmann C, Johnk L, Kitange G, Wu Y, Ashworth LK, Jenkins RB, et al. Transcript map of the 3.7-Mb D19S112–S246 candidate tumor suppressor region on the long arm of chromosome 19. Cancer Res. 2002;62(14):4100–8.PubMedGoogle Scholar
  18. 18.
    Smith JS, Tachibana I, Pohl U, Lee HK, Thanarajasingam U, Portier BP, et al. A transcript map of the chromosome 19q-arm glioma tumor suppressor region. Genomics. 2000;64(1):44–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang B, Starostik P, Kuhl J, Tonn JC, Roggendorf W. Loss of heterozygosity on chromosome 22 in human ependymomas. Acta Neuropathol. 2002;103(4):415–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, Thompson D, et al. Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1–q13.3. Neuro Oncol. 2005;7(1):20–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Oskam NT, Bijleveld EH, Hulsebos TJ. A region of common deletion in 22q13.3 in human glioma associated with astrocytoma progression. Int J Cancer. 2000;85(3):336–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Ino Y, Silver JS, Blazejewski L, Nishikawa R, Matsutani M, von Deimling A, et al. Common regions of deletion on chromosome 22q12.3–q13.1 and 22q13.2 in human astrocytomas appear related to malignancy grade. J Neuropathol Exp Neurol. 1999;58(8):881–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Boon K, Edwards JB, Siu IM, Olschner D, Eberhart CG, Marra MA, et al. Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene. 2003;22(48):7687–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Fuller GN, Rhee CH, Hess KR, Caskey LS, Wang R, Bruner JM, et al. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res. 1999;59(17):4228–32.PubMedGoogle Scholar
  25. 25.
    Caskey LS, Fuller GN, Bruner JM, Yung WK, Sawaya RE, Holland EC, et al. Toward a molecular classification of the gliomas: histopathology, molecular genetics, and gene expression profiling. Histol Histopathol. 2000;15(3):971–81.PubMedGoogle Scholar
  26. 26.
    Huang H, Colella S, Kurrer M, Yonekawa Y, Kleihues P, Ohgaki H. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res. 2000;60(24):6868–74.PubMedGoogle Scholar
  27. 27.
    Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 2000;60(23):6617–22.PubMedGoogle Scholar
  28. 28.
    Chakravarti A, Delaney MA, Noll E, Black PM, Loeffler JS, Muzikansky A, et al. Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. Clin Cancer Res. 2001;7(8):2387–95.PubMedGoogle Scholar
  29. 29.
    Somasundaram K, Reddy SP, Vinnakota K, Britto R, Subbarayan M, Nambiar S, et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene. 2005;24(47):7073–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Raza SM, Fuller GN, Rhee CH, Huang S, Hess K, Zhang W, et al. Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res. 2004;10(1 Pt 1):212–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA. 1994;91(11):5022–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24(3):133–41.PubMedCrossRefGoogle Scholar
  35. 35.
    McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis M, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.CrossRefGoogle Scholar
  36. 36.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Cerami E, Demir E, Schultz N, Taylor BS, Sander C. Automated network analysis identifies core pathways in glioblastoma. PLoS One. 2010;5(2):e8918.PubMedCrossRefGoogle Scholar
  38. 38.
    Bredel M, Scholtens DM, Harsh GR, Bredel C, Chandler JP, Renfrow JJ, et al. A network model of a cooperative genetic landscape in brain tumors. JAMA. 2009;302(3):261–75.PubMedCrossRefGoogle Scholar
  39. 39.
    Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One. 2009;4(11):e7752.PubMedCrossRefGoogle Scholar
  40. 40.
    • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. Results were validated using TCGA data.PubMedCrossRefGoogle Scholar
  41. 41.
    Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95(25):14863–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics. 2005;21(13):3017–24.PubMedCrossRefGoogle Scholar
  43. 43.
    •• Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A, et al. A multigene predictor of outcome in glioblastoma. Neuro Oncol. 2010;12(1):49–57. Microarray data from four independent sets were used and consensus genes were identified. Results were validated using TCGA data.PubMedCrossRefGoogle Scholar
  44. 44.
    • Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol. 2012;123(5):727–38. Four institutional gene expression datasets were used for signature discovery and validated using an independent dataset of 84 infratentorial ependymomas.PubMedCrossRefGoogle Scholar
  45. 45.
    Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: From disarray to consolidation and consensus. Nat Rev Genet. 2006;7(1):55–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Baker J. Genomic Health, Inc. Pharmacogenomics. 2007;8(4):397–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278.PubMedCrossRefGoogle Scholar
  48. 48.
    Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 2001;61(18):6885–91.PubMedGoogle Scholar
  49. 49.
    Kim S, Dougherty ER, Shmulevich I, Hess KR, Hamilton SR, Trent JM, et al. Identification of combination gene sets for glioma classification. Mol Cancer Ther. 2002;1(13):1229–36.PubMedGoogle Scholar
  50. 50.
    Dai B, Kang SH, Gong W, Liu M, Aldape KD, Sawaya R, et al. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene. 2007;26(42):6212–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 2006;66(7):3593–602.PubMedCrossRefGoogle Scholar
  52. 52.
    Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 2003;63(7):1602–7.PubMedGoogle Scholar
  53. 53.
    Nigro JM, Misra A, Zhang L, Smirnov I, Colman H, Griffin C, et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005;65(5):1678–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Tanwar MK, Gilbert MR, Holland EC. Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res. 2002;62(15):4364–8.PubMedGoogle Scholar
  56. 56.
    Nigro JM, Misra A, Zhang L, Smirnov I, Colman H, Griffin C, et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005;65(5):1678–86.PubMedCrossRefGoogle Scholar
  57. 57.
    Nutt CL, Betensky RA, Brower MA, Batchelor TT, Louis DN, Stemmer-Rachamimov AO. YKL-40 is a differential diagnostic marker for histologic subtypes of high-grade gliomas. Clin Cancer Res. 2005;11(6):2258–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Liang Y, Bollen AW, Aldape KD, Gupta N. Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC Cancer. 2006;6(1):97.PubMedCrossRefGoogle Scholar
  59. 59.
    Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA. 2005;102(16):5814–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu F, Park PJ, Lai W, Maher E, Chakravarti A, Durso L, et al. A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res. 2006;66(22):10815–23.PubMedCrossRefGoogle Scholar
  61. 61.
    Persson O, Krogh M, Saal LH, Englund E, Liu J, Parsons R, et al. Microarray analysis of gliomas reveals chromosomal position-associated gene expression patterns and identifies potential immunotherapy targets. J Neurooncol. 2007;85(1):11–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Radiation Therapy Oncology Group. Temozolomide and radiation therapy with or without bevacizumab in treating patients with newly diagnosed glioblastoma. 2009–2012. http://www.clinicaltrials.gov/ct2/show/NCT00884741?term=rtog+0825&rank=1
  63. 63.
    Khwaja FW, Nolen JD, Mendrinos SE, Lewis MM, Olson JJ, Pohl J, et al. Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the central nervous system and identifies specific protein markers. Proteomics. 2006;6(23):6277–87.PubMedCrossRefGoogle Scholar
  64. 64.
    Khwaja FW, Reed MS, Olson JJ, Schmotzer BJ, Gillespie GY, Guha A, et al. Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients. J Proteome Res. 2007;6(2):559–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Liu J, Zheng S, Yu JK, Zhang JM, Chen Z. Serum protein fingerprinting coupled with artificial neural network distinguishes glioma from healthy population or brain benign tumor. J Zhejiang Univ Sci B. 2005;6(1):4–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Petrik V, Saadoun S, Loosemore A, Hobbs J, Opstad KS, Sheldon J, et al. Serum alpha 2-HS glycoprotein predicts survival in patients with glioblastoma. Clin Chem. 2008;54(4):713–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, et al. Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 2003;63(11):2742–6.PubMedGoogle Scholar
  69. 69.
    Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman EP, et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol. 2007;25(16):2288–94.PubMedCrossRefGoogle Scholar
  70. 70.
    Sulman EP, Guerrero M, Aldape K. Beyond grade: molecular pathology of malignant gliomas. Semin Radiat Oncol. 2009;19(3):142–9.PubMedCrossRefGoogle Scholar
  71. 71.
    •• Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12. High-density oligonucleotide arrays and next-generation sequencing were used to identify transcripts for 23,219 from 20,661 genes. IDH mutations are more likely in younger patients and those with secondary glioblastoma.PubMedCrossRefGoogle Scholar
  72. 72.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116(6):597–602.PubMedCrossRefGoogle Scholar
  74. 74.
    Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res. 2009;15(19):6002–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29(34):4482–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Phillips TM, McBride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98(24):1777–85.PubMedCrossRefGoogle Scholar
  77. 77.
    Pignatti F, van den Bent M, Curran D, Debruyne C, Sylvester R, Therasse P, et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol. 2002;20(8):2076–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Watson MA, Perry A, Budhraja V, Hicks C, Shannon WD, Rich KM. Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Res. 2001;61(5):1825–9.PubMedGoogle Scholar
  79. 79.
    Mukasa A, Ueki K, Ge X, Ishikawa S, Ide T, Fujimaki T, Nishikawa R, Asai A, Kirino T, Aburatani H. Selective expression of a subset of neuronal genes in oligodendroglioma with chromosome 1p loss. Brain Pathol. 2004;14(1):34–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Ducray F, Idbaih A, de Reynies A, Bieche I, Thillet J, Mokhtari K, et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer. 2008;7:41.PubMedCrossRefGoogle Scholar
  81. 81.
    Tews B, Felsberg J, Hartmann C, Kunitz A, Hahn M, Toedt G, et al. Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int J Cancer. 2006;119(4):792–800.PubMedCrossRefGoogle Scholar
  82. 82.
    Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res. 2005;11(3):1119–28.PubMedGoogle Scholar
  83. 83.
    Walker C, Haylock B, Husband D, Joyce KA, Fildes D, Jenkinson MD, et al. Clinical use of genotype to predict chemosensitivity in oligodendroglial tumors. Neurology. 2006;66(11):1661–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66(20):9852–61.PubMedCrossRefGoogle Scholar
  85. 85.
    Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, Brachman D, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol. 2006;24(18):2707–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2012. doi:10.1200/JCO.2012.43.2674.
  87. 87.
    van den Bent MJ, Carpentier AF, Brandes AA, Sanson M, Taphoorn MJ, Bernsen HJ, et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol. 2006;24(18):2715–22.PubMedCrossRefGoogle Scholar
  88. 88.
    van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC Brain Tumor Group study 26951. J Clin Oncol. 2012. doi:10.1200/JCO.2012.43.2229.
  89. 89.
    Korshunov A, Neben K, Wrobel G, Tews B, Benner A, Hahn M, et al. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol. 2003;163(5):1721–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8(4):323–35.PubMedCrossRefGoogle Scholar
  91. 91.
    Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, et al. Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol. 2006;24(33):5223–33.PubMedCrossRefGoogle Scholar
  92. 92.
    Sowar K, Straessle J, Donson AM, Handler M, Foreman NK. Predicting which children are at risk for ependymoma relapse. J Neurooncol. 2006;78(1):41–6.PubMedCrossRefGoogle Scholar
  93. 93.
    de Bont JM, Kros JM, Passier MM, Reddingius RE. Sillevis Smitt PA, Luider TM, den Boer ML, Pieters R: Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro Oncol. 2008;10:648–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Lukashova-v Zangen I, Kneitz S, Monoranu CM, Rutkowski S, Hinkes B, Vince GH, et al. Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol. 2007;113(3):325–37.PubMedCrossRefGoogle Scholar
  95. 95.
    Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, et al. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One. 2011;6(10):e25114.PubMedCrossRefGoogle Scholar
  96. 96.
    Michalowski MB, de Fraipont F, Michelland S, Entz-Werle N, Grill J, Pasquier B, et al. Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet. 2006;166(1):74–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Rahman R, Osteso-Ibanez T, Hirst RA, Levesley J, Kilday JP, Quinn S, et al. Histone deacetylase inhibition attenuates cell growth with associated telomerase inhibition in high-grade childhood brain tumor cells. Mol Cancer Ther. 2010;9(9):2568–81.PubMedCrossRefGoogle Scholar
  98. 98.
    CBTRUS. Statistical report: primary brain tumors in the United States, 2000–2004. In; 2008.Google Scholar
  99. 99.
    Gabeau-Lacet D, Engler D, Gupta S, Scangas GA, Betensky RA, Barker 2nd FG, et al. Genomic profiling of atypical meningiomas associates gain of 1q with poor clinical outcome. J Neuropathol Exp Neurol. 2009;68(10):1155–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6(2):180–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Sulman EP, Dumanski JP, White PS, Zhao H, Maris JM, Mathiesen T, et al. Identification of a consistent region of allelic loss on 1p32 in meningiomas: correlation with increased morbidity. Cancer Res. 1998;58(15):3226–30.PubMedGoogle Scholar
  102. 102.
    Sulman EP, White PS, Brodeur GM. Genomic annotation of the meningioma tumor suppressor locus on chromosome 1p34. Oncogene. 2004;23(4):1014–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Carvalho LH, Smirnov I, Baia GS, Modrusan Z, Smith JS, Jun P, et al. Molecular signatures define two main classes of meningiomas. Mol Cancer. 2007;6:64.PubMedCrossRefGoogle Scholar
  104. 104.
    Goutagny S, Yang HW, Zucman-Rossi J, Chan J, Dreyfuss JM, Park PJ, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res. 2010;16(16):4155–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Lee Y, Liu J, Patel S, Cloughesy T, Lai A, Farooqi H, et al. Genomic landscape of meningiomas. Brain Pathol. 2010;20(4):751–62.PubMedCrossRefGoogle Scholar
  106. 106.
    Bie L, Zhao G, Ju Y, Zhang B. Integrative genomic analysis identifies CCNB1 and CDC2 as candidate genes associated with meningioma recurrence. Cancer Genet. 2011;204(10):536–40.PubMedCrossRefGoogle Scholar
  107. 107.
    MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y, et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet. 2001;29(2):143–52.PubMedCrossRefGoogle Scholar
  108. 108.
    Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Kokocinski F, et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res. 2004;64(9):3103–11.PubMedCrossRefGoogle Scholar
  109. 109.
    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415(6870):436–42.PubMedCrossRefGoogle Scholar
  110. 110.
    Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24(12):1924–31.PubMedCrossRefGoogle Scholar
  111. 111.
    •• Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011;29(11):1424–30. Molecular classification of meduloblastoma, validated with 102 patients from three independent cohorts.PubMedCrossRefGoogle Scholar
  112. 112.
    Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, et al. International network of cancer genome projects. Nature. 2010;464(7291):993–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL, et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol. 2011;29(11):1400–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med. 2010;2(51):51ra70.PubMedCrossRefGoogle Scholar
  115. 115.
    Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361(12):1173–8.PubMedCrossRefGoogle Scholar
  116. 116.
    • Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29(11):1408–14. The four subgroups were validated using immunohistochemistry.PubMedCrossRefGoogle Scholar
  117. 117.
    Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol. 2012;8(6):340–51.PubMedCrossRefGoogle Scholar
  118. 118.
    Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409):100–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.PubMedCrossRefGoogle Scholar
  120. 120.
    Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn M-J, et al. Phase III study of crizotinib versus pemetrexed or docetaxel chemotherapy in patients with advanced ALK-positive non-small cell lung cancer (NSCLC) (PROFILE 1007). In: European Society for Medical Oncology 2012 Congress. Vienna, Austria; Presented on September 30, 2012: LBA1_PR.Google Scholar
  121. 121.
    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRefGoogle Scholar
  123. 123.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.PubMedCrossRefGoogle Scholar
  124. 124.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedCrossRefGoogle Scholar
  125. 125.
    Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010;12(2):116–21.PubMedCrossRefGoogle Scholar
  126. 126.
    Wick W, Platten M, Meisner C, Felsberg J, Tabatabai G, Simon M, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012;13(7):707–15.PubMedCrossRefGoogle Scholar
  127. 127.
    Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 2005;11(4):1462–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37 Suppl 4:S3–8.PubMedCrossRefGoogle Scholar
  129. 129.
    de Groot JF, Gilbert MR, Aldape K, Hess KR, Hanna TA, Ictech S, et al. Phase II study of carboplatin and erlotinib (Tarceva, OSI-774) in patients with recurrent glioblastoma. J Neurooncol. 2008;90(1):89–97.PubMedCrossRefGoogle Scholar
  130. 130.
    Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH, et al. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol. 2008;26(34):5603–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.PubMedCrossRefGoogle Scholar
  132. 132.
    van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol. 2009;27(8):1268–74.PubMedCrossRefGoogle Scholar
  133. 133.
    Mendelsohn J. The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer. 2001;8(1):3–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Sargent DJ, Conley BA, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol. 2005;23(9):2020–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations