Current Oncology Reports

, Volume 14, Issue 5, pp 387–394 | Cite as

Philadelphia-Positive Acute Lymphoblastic Leukemia: Current Treatment Options

  • Theresa Liu-Dumlao
  • Hagop Kantarjian
  • Deborah A. Thomas
  • Susan O’Brien
  • Farhad Ravandi
Leukemia (A Aguayo, Section Editor)

Abstract

The Philadelphia chromosome (Ph), t(9;22), is seen in about 20 % to 30 % of adults diagnosed with acute lymphoblastic leukemia (ALL). It has been associated with poorer prognosis compared with Ph-negative ALL. Tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL oncogenic protein from this translocation have been incorporated into treatment regimens used to treat patients with Ph-positive ALL. Imatinib has been the most widely used TKI with several published trials showing it produced better outcomes when combined with chemotherapy. Dasatinib, a more potent inhibitor than imatinib, has also been evaluated with promising results. However, relapses still occur at a high rate, and allogeneic stem cell transplant is considered, so far, a better curative option in first remission. Additional strategies have also included incorporation of TKIs in the post-transplant setting and the use of newer third generation TKIs. This review provides an update on emerging therapies for adults with Ph-positive ALL.

Keywords

Philadelphia chromosome ALL Tyrosine kinase inhibitors Allogeneic stem cell transplant 

Notes

Disclosure

T. Liu-Dumlao: none; H. Kantarjian: none; D. A. Thomas: none; S. O’Brien: none; F. Ravandi: honoraria from Bristol Myers.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wetzler M, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the cancer and leukemia Group B experience. Blood. 1999;93:3983–93.PubMedGoogle Scholar
  2. 2.
    Faderl S, Jeha S, Kantarjian HM. The biology and therapy of adult acute lymphoblastic leukemia. Cancer. 2003;98:1337–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Burmeister T, Schwartz S, Bartram CR, Gokbuget N, Hoelzer D, Thiel E. Patients' age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood. 2008;112:918–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Secker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV. Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia. 1991;5:196–9.PubMedGoogle Scholar
  6. 6.
    Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Gleissner B, Gokbuget N, Bartram CR, et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 2002;99:1536–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Vitale A, Guarini A, Chiaretti S, Foa R. The changing scene of adult acute lymphoblastic leukemia. Curr Opin Oncol. 2006;18:652–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Fielding AK, Rowe JM, Richards SM, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009;113:4489–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100:1965–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:28–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Pfeifer H, Wassmann B, Pavlova A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007;110:727–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Hu Y, Liu Y, Pelletier S, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet. 2004;36:453–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci U S A. 2006;103:16870–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61.PubMedCrossRefGoogle Scholar
  16. 16.
    O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65:4500–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Hiwase DK, Saunders V, Hewett D, et al. Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res. 2008;14:3881–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Li S. Src-family kinases in the development and therapy of Philadelphia chromosome-positive chronic myeloid leukemia and acute lymphoblastic leukemia. Leuk Lymphoma. 2008;49:19–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Fielding AK. How I treat Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2010;116:3409–17.PubMedCrossRefGoogle Scholar
  20. 20.
    SPRYCEL® (dasatinib) [package insert].Google Scholar
  21. 21.
    Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110:2309–15.PubMedCrossRefGoogle Scholar
  23. 23.
    Porkka K, Martinelli G, Ottmann OG, et al. Dasatinib efficacy in patients with imatinib-resistant/-intolerant Philadelphia-chromosome-positive acute lymphoblastic leukemia: 24-month data from START-L. Haematologica. 2008;93 Suppl 1:1(EHA 2008 abstract).Google Scholar
  24. 24.
    Lilly MB, Ottmann OG, Shah NP, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: results from a phase 3 study. Am J Hematol. 2010;85:164–70.PubMedGoogle Scholar
  25. 25.
    Ravandi F, Kantarjian HM, Cortes J, et al. Combination of the hypercvad regimen with Dasatinib is effective in patients with relapsed Philadelphia chromosome (Ph) positive acute lymphoblastic leukemia (ALL) and lymphoid blast phase chronic myeloid leukemia (CML-LB). Blood. 2009;114:806–7.Google Scholar
  26. 26.
    Liu-Dumlao T, O'Brien S, Cortes JE, et al. Combination of the hypercvad regimen with dasatinib in patients with relapsed Philadelphia chromosome (Ph) positive acute lymphoblastic leukemia (ALL) or lymphoid blast phase of chronic myeloid leukemia (CML-LB). ASH Annual Meeting Abstracts. Blood. 2011;118:2578.Google Scholar
  27. 27.
    • Foa R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Ravandi F, O'Brien S, Thomas D, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee HJ, Kantarjian HM, Thomas DA, et al. Long-term follow-up of combined hypercvad (hCVAD) regimen with dasatinib (Db) in the front line therapy of patients (pts) with Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). ASH Annual Meeting Abstracts. Blood. 2011;118:1512.Google Scholar
  30. 30.
    Rousselot P, Cayuela JM, Hayette S, et al. Dasatinib (sprycel) and chemotherapy for first-line treatment in elderly patients with de novo Philadelphia positive ALL (EWALL-Ph-01): analysis of response and resistance. Haematologica. 2009;94 Suppl 2:195(EHA 2009 abstract).Google Scholar
  31. 31.
    Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–51.PubMedCrossRefGoogle Scholar
  32. 32.
    TASIGNA® (nilotinib) [package insert].Google Scholar
  33. 33.
    Kim D-Y, Joo YD, Lee J-H, et al. Nilotinib combined with multi-agent chemotherapy for adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia: interim results of Korean Adult ALL Working Party Phase 2 Study. ASH Annual Meeting Abstracts. Blood. 2011;118:1517.Google Scholar
  34. 34.
    Giles FJ, Kantarjian HM, le Coutre PD, et al. Nilotinib is effective in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia. 2011;26:959–62.Google Scholar
  35. 35.
    Gambacorti-Passerini C, Khoury HJ, Pinczowski H, et al. Clinical activity of bosutinib by mutational status in patients with previously treated Philadelphia chromosome-positive leukemias. ASH Annual Meeting Abstracts. Blood. 2010;116:3434.Google Scholar
  36. 36.
    Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Initial findings from the PACE trial: a pivotal phase 2 study of ponatinib in patients with CML and Ph+ ALL resistant or intolerant to dasatinib or nilotinib, or with the T315I mutation. ASH Annual Meeting Abstracts. Blood. 2011;118:109.Google Scholar
  37. 37.
    Cortes JE, Talpaz M, Kantarjian HM, et al. A Phase 1 Study of DCC-2036, a novel oral inhibitor of BCR-ABL kinase, in patients with Philadelphia chromosome positive (Ph+) leukemias including patients with T315I mutation. ASH Annual Meeting Abstracts. Blood. 2011;118:601.Google Scholar
  38. 38.
    Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111:1827–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Arnold R, Massenkeil G, Bornhauser M, et al. Nonmyeloablative stem cell transplantation in adults with high-risk ALL may be effective in early but not in advanced disease. Leukemia. 2002;16:2423–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Martino R, Giralt S, Caballero M, et al. Allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning in acute lymphoblastic leukemia: a feasibility study. Haematologica. 2003;88:555–60.PubMedGoogle Scholar
  41. 41.
    Mohty M, Labopin M, Tabrizzi R, et al. Reduced intensity conditioning allogeneic stem cell transplantation for adult patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Haematologica. 2008;93:303–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Stein AS, Palmer JM, O'Donnell MR, et al. Reduced-intensity conditioning followed by peripheral blood stem cell transplantation for adult patients with high-risk acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2009;15:1407–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Shimoni A, Leiba M, Schleuning M, et al. Prior treatment with the tyrosine kinase inhibitors dasatinib and nilotinib allows stem cell transplantation (SCT) in a less advanced disease phase and does not increase SCT Toxicity in patients with chronic myelogenous leukemia and philadelphia positive acute lymphoblastic leukemia. Leukemia. 2009;23:190–4.PubMedCrossRefGoogle Scholar
  44. 44.
    •• Schultz KR, Bowman WP, Aledo A, et al. Improved Early Event-Free Survival With Imatinib in Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: a Children's Oncology Group Study. J Clin Oncol. 2009;27:5175–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Carpenter PA, Snyder DS, Flowers ME, et al. Prophylactic administration of imatinib after hematopoietic cell transplantation for high-risk Philadelphia chromosome-positive leukemia. Blood. 2007;109:2791–3.PubMedGoogle Scholar
  46. 46.
    Pfeifer H, Wassmann B, Bethge WA, et al. Updated long-term results of a randomized comparison of prophylactic and pre-emptive imatinib following allogeneic stem cell transplantation for Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL). ASH Annual Meeting Abstracts. Blood. 2011;118:247.Google Scholar
  47. 47.
    Ravandi F, Thomas DA, O'Brien S, et al. Detection of minimal residual leukemia predicts the outcome of patients with Philadelphia-chromosome positive acute lymphoblastic leukemia treated with tyrosine kinase inhibitors plus chemotherapy. ASH Annual Meeting Abstracts. Blood. 2011;118:1453.Google Scholar
  48. 48.
    Zhou Y, Jorgensen JL, Saliba RM, et al. Pre-transplant minimal residual disease detected by multiparameter flow cytometric analysis predicts for disease relapse in adult patients with acute lymphoblastic leukemia post allogeneic hematopoietic stem cell transplantation. ASH Annual Meeting Abstracts. Blood. 2011;118:3072.Google Scholar
  49. 49.
    Pfeifer H, Cazzaniga G, Spinelli O, et al. International standardization of minimal residual disease assessment for in Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) expressing m-BCR-ABL transcripts: updated results of quality control procedures by the EWALL and ESG-MRD-ALL consortia. ASH Annual Meeting Abstracts. Blood. 2011;118:2535.Google Scholar
  50. 50.
    Ravandi F, Kebriaei P. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23:1043–63.PubMedCrossRefGoogle Scholar
  51. 51.
    Bloomfield CD, Goldman AI, Alimena G, et al. Chromosomal abnormalities identify high-risk and low-risk patients with acute lymphoblastic leukemia. Blood. 1986;67:415–20.PubMedGoogle Scholar
  52. 52.
    Gotz G, Weh HJ, Walter TA, et al. Clinical and prognostic significance of the Philadelphia chromosome in adult patients with acute lymphoblastic leukemia. Ann Hematol. 1992;64:97–100.PubMedCrossRefGoogle Scholar
  53. 53.
    Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood. 1995;85:2025–37.PubMedGoogle Scholar
  54. 54.
    Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings outcome. A Collaborative Study of the Group Francais de Cytogenetique Hematologique. Blood. 1996;87:3135–42.Google Scholar
  55. 55.
    Secker-Walker LM, Prentice HG, Durrant J, Richards S, Hall E, Harrison G. Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. Br J Haematol. 1997;96:601–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Faderl S, Kantarjian HM, Thomas DA, et al. Outcome of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Leuk Lymphoma. 2000;36:263–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Dombret H, Gabert J, Boiron JM, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia–results of the prospective multicenter LALA-94 trial. Blood. 2002;100:2357–66.PubMedCrossRefGoogle Scholar
  58. 58.
    Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342:998–1006.PubMedCrossRefGoogle Scholar
  59. 59.
    Schrappe M, Arico M, Harbott J, et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood. 1998;92:2730–41.PubMedGoogle Scholar
  60. 60.
    Delannoy A, Delabesse E, Lheritier V, et al. Imatinib and methylprednisolone alternated with chemotherapy improve the outcome of elderly patients with Philadelphia-positive acute lymphoblastic leukemia: results of the GRAALL AFR09 study. Leukemia. 2006;20:1526–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Delannoy A, Delabesse E, Lheritier V, et al. The long-term outcome of elderly patients with Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) in the imatinib era. Haematologica. 2009;Suppl 2:30(EHA 2009 abstract).Google Scholar
  62. 62.
    Yanada M, Takeuchi J, Sugiura I, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24:460–6.PubMedCrossRefGoogle Scholar
  63. 63.
    de Labarthe A, Rousselot P, Huguet-Rigal F, et al. Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood. 2007;109:1408–13.PubMedCrossRefGoogle Scholar
  64. 64.
    Ribera JM, Oriol A, Gonzalez M, et al. Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial. Haematologica. 2010;95:87–95.PubMedCrossRefGoogle Scholar
  65. 65.
    Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28:3644–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Wassmann B, Pfeifer H, Goekbuget N, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2006;108:1469–77.PubMedCrossRefGoogle Scholar
  67. 67.
    Pfeifer H, Goekbuget N, Volp C, et al. Long-term outcome of 335 adult patients receiving different schedules of imatinib and chemotherapy as front-line treatment for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). ASH Annual Meeting Abstracts. Blood. 2010;116:173.Google Scholar
  68. 68.
    Fielding AK, Buck G, Lazarus HM, et al. Imatinib significantly enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukaemia: final results of the UKALLXII/ECOG2993 trial. ASH Annual Meeting Abstracts. Blood. 2010;116:169.Google Scholar
  69. 69.
    Thomas DA, Faderl S, Cortes J, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004;103:4396–407.PubMedCrossRefGoogle Scholar
  70. 70.
    Thomas DA, O'Brien SM, Faderl S, et al. Long-term outcome after hyper-CVAD and imatinib (IM) for de novo or minimally treated Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL). J Clin Oncol. 2010;28 Suppl 15:488s(ASCO 2010 abstract #6506).Google Scholar
  71. 71.
    Foa R, Vitale A, Guarini A, et al. Line Treatment of Adult Ph+ Acute Lymphoblastic Leukemia (ALL) Patients. Final results of the GIMEMA LAL1205 Study. ASH Annual Meeting Abstracts. Blood. 2008;112:305.Google Scholar
  72. 72.
    Lee S, Kim D-W, Kim Y-J, et al. First-line dasatinib plus conventional chemotherapy in adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL): interim analysis of the Korean Prospective Phase II Study. ASH Annual Meeting Abstracts. 2011;118:1516.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Theresa Liu-Dumlao
    • 1
  • Hagop Kantarjian
    • 1
  • Deborah A. Thomas
    • 1
  • Susan O’Brien
    • 1
  • Farhad Ravandi
    • 1
  1. 1.The University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations