Current Oncology Reports

, Volume 13, Issue 6, pp 442–449 | Cite as

PARP Inhibitors in BRCA Gene-Mutated Ovarian Cancer and Beyond

  • Susana Banerjee
  • Stan Kaye
Gynecologic Cancers (Jonathan A. Ledermann, Section Editor)


Poly(ADP-ribose)polymerase (PARP) inhibitors are showing considerable promise for the treatment of BRCA mutation–associated ovarian and breast cancer. This approach exploits a synthetic lethal strategy to target the specific DNA repair pathway in cancers that harbor mutations in the BRCA1 or BRCA2 genes. Accumulating evidence suggests that PARP inhibitors may have a wider application in the treatment of sporadic, high-grade serous ovarian cancers and other cancers including endometrial cancer. In this review, we discuss the clinical development of PARP inhibitors in ovarian cancer and explore challenges that need to be addressed if the full potential of these agents is to be realized.


PARP inhibitors Ovarian cancer BRCA Olaparib Endometrial 



S. Banerjee: none; S. Kaye: advisory boards to AstraZeneca and Merck.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    GLOBOCAN 2008. Cancer incidence and mortality worldwide in 2008.
  2. 2.
    Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, et al. Involvement of Brca2 in DNA repair. Mol Cell. 1998;1(3):347–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G, et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 2001;20(17):4704–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol. 2002;22(2):669–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Boyd J, Sonoda Y, Federici MG, Bogomolniy F, Rhei E, Maresco DL, et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA. 2000;283(17):2260–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Ben David Y, Chetrit A, Hirsh-Yechezkel G, Friedman E, Beck BD, Beller U, et al. Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J Clin Oncol. 2002;20(2):463–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Tan DS, Rothermundt C, Thomas K, Bancroft E, Eeles R, Shanley S, et al. “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol. 2008;26(34):5530–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Banerjee S, Kaye S, Ashworth A. Making the best of PARP inhibitors in ovarian cancer. Nat Rev Clin Oncol. 2010;7(9):508–19.Google Scholar
  11. 11.
    Kaelin Jr WG. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Canc. 2005;5(9):689–98.CrossRefGoogle Scholar
  12. 12.
    Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.PubMedCrossRefGoogle Scholar
  14. 14.
    •• Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New Engl J Med. 2009;361(2):123–34. This pivotal phase 1 study provides proof of concept for a synthetic lethal approach with PARP inhibitors in BRCA-associated cancers. PubMedCrossRefGoogle Scholar
  15. 15.
    • Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol. 2010;28(15):2512–9. Olaparib has antitumor activity in BRCA1/2 mutation ovarian cancer, which is associated with platinum sensitivity. PubMedCrossRefGoogle Scholar
  16. 16.
    • Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010;376(9737):245–51. This phase 2 study provides proof of concept of the efficacy and tolerability of genetically targeted treatment with olaparib in BRCA-mutated advanced ovarian cancer.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaye S, Kaufman B, Lubinski J, Matulonis U, Gourley C, Karlan B, et al. Phase II study of the oral PARP inhibitor olaparib (AZD2281) versus liposomal doxorubicin in ovarian cancer patients with BRCA1 and/or BRCA2 mutations. Ann Oncol. 2010;21(Supplement 8),(abstract 9710).Google Scholar
  18. 18.
    Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001;19(14):3312–22.PubMedGoogle Scholar
  19. 19.
    Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J, et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Canc Res. 2010;16(24):6159–68.CrossRefGoogle Scholar
  20. 20.
    Sandhu SK, Wenham RM, Wilding G, McFadden M, Sun L, Toniatti C, et al. First-in-human trial of a poly(ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient and sporadic ovarian cancers. J Clin Oncol. 2010;28:15s (suppl; abstr 3001).CrossRefGoogle Scholar
  21. 21.
    Drew Y, Ledermann JA, Jones A, Hall G, Jayson GC, Highley M, et al. Phase II trial of the poly(ADP-ribose) polymerase (PARP) inhibitor AG-014699 in BRCA 1 and 2–mutated, advanced ovarian and/or locally advanced or metastatic breast cancer. J Clin Oncol. 2011;29(suppl; abstr 3104).Google Scholar
  22. 22.
    Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Canc. 2004;4(10):814–9.CrossRefGoogle Scholar
  23. 23.
    Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Narod S, et al. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Canc Res. 2000;60(19):5329–33.Google Scholar
  24. 24.
    Press JZ, De Luca A, Boyd N, Young S, Troussard A, Ridge Y, et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Canc. 2008;8:17.CrossRefGoogle Scholar
  25. 25.
    • Hennessy BT, Timms KM, Carey MS, Gutin A, Meyer LA, Flake DD, et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol. 2010;28(22):3570–6. BRCA1/2 somatic and germline mutations and expression loss are common in ovarian cancer, in particular, high-grade serous cancers, suggesting that PARP inhibitors may have wider utility.PubMedCrossRefGoogle Scholar
  26. 26.
    Gelmon KA, Hirte HW, Robidoux A, Tonkin KS, Tischkowitz M, Swenerton K, et al. Can we define tumors that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian cancer and triple-negative breast cancer. J Clin Oncol. 2010;28:15s (suppl; abstr 3002).Google Scholar
  27. 27.
    Oza A, Tischkowitz M, Mackay H, Swenerton K, Hirte H, Robidoux A, et al. A phase II trial demonstrating activity of single agent olaparib in women with recurrent serous ovarian carcinoma. IGCS Meeting 2010, Abstract # 2010_856.Google Scholar
  28. 28.
    Ledermann JA, Harter P, Gourley C, Friedlander M, Vergote IB, Rustin GJS, et al. Phase II randomized placebo-controlled study of olaparib (AZD2281) in patients with platinum-sensitive relapsed serous ovarian cancer (PSR SOC). J Clin Oncol. 2011;29(suppl; abstr 5003).Google Scholar
  29. 29.
    Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med. 2009;1(6–7):315–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Dedes KJ, Wetterskog D, Mendes-Pereira AM, Natrajan R, Lambros MB, Geyer FC, et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med. 2010;2(53):53ra75.PubMedCrossRefGoogle Scholar
  31. 31.
    Donawho CK, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Canc Res. 2007;13(9):2728–37.CrossRefGoogle Scholar
  32. 32.
    Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Canc Inst. 2004;96(1):56–67.CrossRefGoogle Scholar
  33. 33.
    Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Canc Res. 2000;6(7):2860–7.Google Scholar
  34. 34.
    O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. New Engl J Med. 2011;364(3):205–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, et al. Safety and efficacy of the oral PARP inhibitor olaparib (AZD2281) in combination with paclitaxel for the first- or second-line treatment of patients with metastatic triple-negative breast cancer: Results from the safety cohort of a phase I/II multicenter trial. J Clin Oncol. 2010;28:15s (suppl; abstr 1018).Google Scholar
  36. 36.
    Plummer R, Lorigan P, Evans J, Steven N, Middleton M, Wilson R, et al. First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J Clin Oncol. 2006;24(18S), ASCO Annual Meeting Proceedings Part I 2006, (June 20 Supplement): 8013.Google Scholar
  37. 37.
    O’Shaughnessy J, Schwartzberg LS, Danso MA, Rugo HS, Miller K, Yardley DA, et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). J Clin Oncol. 2011;29(suppl; abstr 1007).Google Scholar
  38. 38.
    Sanofi-aventis reports top-line results from phase III study with BSI-201 in metastatic triple-negative breast cancer.Google Scholar
  39. 39.
    Rajesh M, Mukhopadhyay P, Batkai S, Godlewski G, Hasko G, Liaudet L, et al. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis. Biochem Biophys Res Commun. 2006;350(2):352–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Pyriochou A, Olah G, Deitch EA, Szabo C, Papapetropoulos A. Inhibition of angiogenesis by the poly(ADP-ribose) polymerase inhibitor PJ-34. Int J Mol Med. 2008;22(1):113–8.PubMedGoogle Scholar
  41. 41.
    Tentori L, Lacal PM, Muzi A, Dorio AS, Leonetti C, Scarsella M, et al. Poly(ADP-ribose) polymerase (PARP) inhibition or PARP-1 gene deletion reduces angiogenesis. Eur J Canc. 2007;43(14):2124–33.CrossRefGoogle Scholar
  42. 42.
    Liu J, Fleming GF, Tolaney SM, Birrer MJ, Penson RT, Berlin ST, et al. A phase I trial of the PARP inhibitor olaparib (AZD2281) in combination with the antiangiogenic cediranib (AZD2171) in recurrent ovarian or triple-negative breast cancer. J Clin Oncol. 2011;29(suppl; abstr 5028).Google Scholar
  43. 43.
    Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol. 2010;28(22):3555–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Mukhopadhyay A, Elattar A, Cerbinskaite A, Wilkinson SJ, Drew Y, Kyle S, et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin Canc Res. 2010;16(8):2344–51.CrossRefGoogle Scholar
  45. 45.
    Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Ang J, Yap TA, Fong P, Carden CP, Tan DS, Hanwell J, et al. Preliminary experience with the use of chemotherapy (CT) following treatment with olaparib, a poly(ADP-ribose) polymerase inhibitor (PARPi), in patients with BRCA1/2-deficient ovarian cancer (BDOC). J Clin Oncol. 2010;28:15s (suppl; abstr 5041).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Gynaecology Unit, The Royal Marsden NHS Foundation TrustSurreyUK
  2. 2.Division of Clinical Studies, Institute of Cancer Research, Drug Development UnitThe Royal Marsden NHS Foundation TrustSurreyUK

Personalised recommendations