Current Oncology Reports

, Volume 12, Issue 1, pp 68–75

Response Assessment Challenges in Clinical Trials of Gliomas

  • Patrick Y. Wen
  • Andrew D. Norden
  • Jan Drappatz
  • Eudocia Quant
Article

Abstract

Accurate, reproducible criteria for determining tumor response and progression after therapy are critical for optimal patient care and effective evaluation of novel therapeutic agents. Currently, the most widely used criteria for determining treatment response in gliomas is based on two-dimensional tumor measurements using neuroimaging studies (Macdonald criteria). In recent years, the limitation of these criteria, which only address the contrast-enhancing component of the tumor, have become increasingly apparent. This review discusses challenges that have emerged in assessing response in patients with gliomas and approaches being introduced to address them.

Keywords

High-grade glioma Response criteria Pseudoprogression 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med 2008, 359:492–507.CrossRefPubMedGoogle Scholar
  2. 2.
    Central Brain Tumor Registry of the United States (CBTRUS): Primary Brain Tumors in the United States, 2000–2004. Available at http://www.cbtrus.org/reports//2007–2008/2007report.pdf. Accessed December 1, 2009.
  3. 3.
    Wong ET, Hess KR, Gleason MJ, et al.: Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 1999, 17:2572–2578.PubMedGoogle Scholar
  4. 4.
    Lamborn KR, Yung WK, Chang SM, et al.: Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol 2008, 10:162–170.CrossRefPubMedGoogle Scholar
  5. 5.
    •• Wen PY, Macdonald DR, Reardon DA, et al.: Proposal for an updated response criteria in high-grade gliomas. J Clin Oncol (in press). This article discusses new, updated response criteria for high-grade gliomas from the RANO Working Group. Google Scholar
  6. 6.
    Therasse P, Arbuck S, Eisenhauer E, et al.: New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000, 92:205–216.CrossRefPubMedGoogle Scholar
  7. 7.
    Eisenhauer EA, Therasse P, Bogaerts J, et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009, 45:228–247.CrossRefPubMedGoogle Scholar
  8. 8.
    Warren KE, Patronas N, Aikin AA, et al.: Comparison of one-, two-, and three-dimensional measurements of childhood brain tumors. J Natl Cancer Inst 2001, 93:1401–1405.CrossRefPubMedGoogle Scholar
  9. 9.
    Shah GD, Kesari S, Xu R, et al.: Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro Oncol 2006, 8:38–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Galanis E, Buckner JC, Maurer MJ, et al.: Validation of neuroradiologic response assessment in gliomas: measurement by RECIST, two-dimensional, computer-assisted tumor area, and computer-assisted tumor volume methods. Neuro Oncol 2006, 8:156–165.CrossRefPubMedGoogle Scholar
  11. 11.
    Macdonald D, Cascino T, Schold SJ, Cairncross J: Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990, 8:1277–1280.PubMedGoogle Scholar
  12. 12.
    • Sorensen AG, Batchelor TT, Wen PY, et al.: Response criteria for glioma. Nat Clin Pract Oncol 2008, 5:634–644. This article provides a good review discussion of the limitations of current response criteria. Google Scholar
  13. 13.
    • Henson JW, Ulmer S, Harris GJ: Brain tumor imaging in clinical trials. AJNR Am J Neuroradiol 2008, 29:419–424. This article offers an excellent overview of imaging in brain tumor trials. Google Scholar
  14. 14.
    •• van den Bent MJ, Vogelbaum MA, Wen PY, et al.: End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s Criteria. J Clin Oncol 2009, 27:2905–2908. This recent article reviews the Response Assessment in Neuro-Oncology Steering Committee on the limitations of the Macdonald criteria. Google Scholar
  15. 15.
    Henegar MM, Moran CJ, Silbergeld DL: Early postoperative magnetic resonance imaging following nonneoplastic cortical resection. J Neurosurg 1996, 84:174–179.CrossRefPubMedGoogle Scholar
  16. 16.
    Kumar AJ, Leeds NE, Fuller GN, et al.: Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000, 217:377–384.PubMedGoogle Scholar
  17. 17.
    Ulmer S, Braga TA, Barker FG 2nd, et al.: Clinical and radiographic features of peritumoral infarction following resection of glioblastoma. Neurology 2006, 67:1668–1670.CrossRefPubMedGoogle Scholar
  18. 18.
    Finn MA, Blumenthal DT, Salzman KL, Jensen RL: Transient postictal MRI changes in patients with brain tumors may mimic disease progression. Surg Neurol 2007, 67:246–250CrossRefPubMedGoogle Scholar
  19. 19.
    Cairncross JG, Macdonald DR, Pexman JH, Ives FJ: Steroid-induced CT changes in patients with recurrent malignant glioma. Neurology 1988, 38:724–726.PubMedGoogle Scholar
  20. 20.
    Watling CJ, Lee DH, Macdonald DR, Cairncross JG: Corticosteroid-induced magnetic resonance imaging changes in patients with recurrent malignant glioma. J Clin Oncol 1994, 12:1886–1889.PubMedGoogle Scholar
  21. 21.
    Cairncross JG, Pexman JH, Rathbone MP, DelMaestro RF: Postoperative contrast enhancement in patients with brain tumor. Ann Neurol 1985, 17:570–572.CrossRefPubMedGoogle Scholar
  22. 22.
    Sato N, Bronen RA, Sze G, et al.: Postoperative changes in the brain: MR imaging findings in patients without neoplasms. Radiology 1997, 204:839–846.PubMedGoogle Scholar
  23. 23.
    Cairncross JG, Pexman JH, Rathbone MP: Post-surgical contrast enhancement mimicking residual brain tumour. Can J Neurol Sci 1985, 12:75.PubMedGoogle Scholar
  24. 24.
    Smith JS, Cha S, Mayo MC, et al.: Serial diffusion-weighted magnetic resonance imaging in cases of glioma: distinguishing tumor recurrence from postresection injury. J Neurosurg 2005, 103:428–438.CrossRefPubMedGoogle Scholar
  25. 25.
    Matheus MG, Castillo M, Ewend M, et al.: CT and MR imaging after placement of the GliaSite radiation therapy system to treat brain tumor: initial experience. AJNR Am J Neuroradiol 2004, 25:1211–1217.PubMedGoogle Scholar
  26. 26.
    Parney IF, Kunwar S, McDermott M, et al.: Neuroradiographic changes following convection-enhanced delivery of the recombinant cytotoxin interleukin 13-PE38QQR for recurrent malignant glioma. J Neurosurg 2005, 102:267–275.CrossRefPubMedGoogle Scholar
  27. 27.
    Floeth FW, Aulich A, Langen KJ, et al.: MR imaging and single-photon emission CT findings after gene therapy for human glioblastoma. AJNR Am J Neuroradiol 2001, 22:1517–1527.PubMedGoogle Scholar
  28. 28.
    Ross DA, Sandler HM, Balter JM, et al.: Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors. J Neurooncol 2002, 56:175–181.CrossRefPubMedGoogle Scholar
  29. 29.
    Kunwar S, Prados MD, Chang SM, et al.: Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 2007, 25:837–844.CrossRefPubMedGoogle Scholar
  30. 30.
    Vogelbaum MA, Sampson JH, Kunwar S, et al.: Convection-enhanced delivery of cintredekin besudotox (interleukin-13-pe38qqr) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2008 Sep 15 (Epub ahead of print).Google Scholar
  31. 31.
    Young GS: Advanced MRI of adult brain tumors. Neurol Clin 2007, 25:947–973.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen W: Clinical applications of PET in brain tumors. J Nucl Med 2007, 48:1468–1481.CrossRefPubMedGoogle Scholar
  33. 33.
    Soares DP, Law M: Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 2009, 64:12–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Sibtain NA, Howe FA, Saunders DE: The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 2007, 62:109–119.CrossRefPubMedGoogle Scholar
  35. 35.
    Stupp R, Mason WP, van den Bent MJ, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352:987–996.CrossRefPubMedGoogle Scholar
  36. 36.
    • Brandsma D, Stalpers L, Taal W, et al.: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008, 9:453–461. This article offers a good review of pseudoprogression. Google Scholar
  37. 37.
    Brandes AA, Tosoni A, Spagnolli F, et al.: Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 2008, 10:361–367.CrossRefPubMedGoogle Scholar
  38. 38.
    • Brandes AA, Franceschi E, Tosoni A, et al.: MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 2008, 26:2192–2197. This important study suggests that MGMT methylation status may correlate with pseudoprogression. Google Scholar
  39. 39.
    Brandsma D, van den Bent MJ: Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009 Sep 16 (Epub ahead of print).Google Scholar
  40. 40.
    Taal W, Brandsma D, de Bruin HG, et al.: Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 2008, 113:405–410.CrossRefPubMedGoogle Scholar
  41. 41.
    Chamberlain MC, Glantz MJ, Chalmers L, et al.: Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 2007, 82:81–83.CrossRefPubMedGoogle Scholar
  42. 42.
    Gerstner ER, McNamara MB, Norden AD, et al.: Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol 2009, 94:97–101. This study suggests that pseudoprogression also occurs following radiotherapy alone. CrossRefPubMedGoogle Scholar
  43. 43.
    de Wit MC, de Bruin HG, Eijkenboom W, et al.: Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004, 63:535–537.PubMedGoogle Scholar
  44. 44.
    Matsusue E, Fink JR, Rockhill JK, et al.: Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2009 Oct 16 (Epub ahead of print).Google Scholar
  45. 45.
    Hu LS, Baxter LC, Smith KA, et al.: Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009, 30:552–558.CrossRefPubMedGoogle Scholar
  46. 46.
    Barajas RF Jr, Chang JS, Segal MR, et al.: Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009, 253:486–496. This interesting study suggests that perfusion imaging may be useful in differentiating radiation necrosis from recurrent tumor. CrossRefPubMedGoogle Scholar
  47. 47.
    Chang SM, Clarke J, Wen P: Novel imaging response assessment for drug therapies in recurrent malignant glioma. In ASCO Educational Book 2009. Edited by Govindan R. Alexandria, VA: American Society of Clinical Oncology; 2009:107–111.Google Scholar
  48. 48.
    Cross NE, Glantz MJ: Neurologic complication of radiation therapy. Neurologic Clinics 2003, 21:249–277.CrossRefPubMedGoogle Scholar
  49. 49.
    Ruben JD, Dally M, Bailey M, et al.: Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 2006, 65:499–508.PubMedGoogle Scholar
  50. 50.
    Shrieve DC, Alexander ER, Wen PY, et al.: Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 1995, 36:275–282.CrossRefPubMedGoogle Scholar
  51. 51.
    Ricci PE, Karis JP, Heiserman JE, et al.: Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998, 19:407–413.PubMedGoogle Scholar
  52. 52.
    Spence AM, Muzi M, Mankoff DA, et al.: 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 2004, 45:1653–1659.PubMedGoogle Scholar
  53. 53.
    Terakawa Y, Tsuyuguchi N, Iwai Y, et al.: Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008, 49:694–699.CrossRefPubMedGoogle Scholar
  54. 54.
    Rachinger W, Goetz C, Popperl G, et al.: Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005, 57; discussion505–511CrossRefPubMedGoogle Scholar
  55. 55.
    Rock JP, Scarpace L, Hearshen D, et al.: Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 2004, 54; discussion 1117–1119CrossRefPubMedGoogle Scholar
  56. 56.
    Batchelor T, Sorensen A, di Tomaso E, et al.: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007, 11:83–95.CrossRefPubMedGoogle Scholar
  57. 57.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al.: Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007, 25:4722–4729.CrossRefPubMedGoogle Scholar
  58. 58.
    Kreisl TN, Kim L, Moore K, et al.: Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009, 27:740–745.CrossRefPubMedGoogle Scholar
  59. 59.
    Friedman HS, Prados MD, Wen PY, et al.: Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009, 27:4733–4740.CrossRefPubMedGoogle Scholar
  60. 60.
    Prados M, Cloughesy T, Samant M, et al.: Evaluation of objective response as a predictor of survival in bevacizumab-treated patients with glioblastoma at first or second relapse in the BRAIN Study. Neuro Oncol (in press).Google Scholar
  61. 61.
    Norden AD, Drappatz J, Muzikansky A, et al.: An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 2009, 92:149–155.CrossRefPubMedGoogle Scholar
  62. 62.
    • Norden AD, Young GS, Setayesh K, et al.: Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008, 70:779–787. This article discusses the first study to draw attention to the patients treated with bevacizumab who subsequently develop invasive nonenhancing tumor. Google Scholar
  63. 63.
    Narayana A, Raza S, Golfinos JG, et al.: Bevacizumab therapy in recurrent high grade glioma: impact on local control and survival [abstract 13000]. Presented at the American Society of Clinical Oncology. Chicago, IL; May 30–June 3, 2008.Google Scholar
  64. 64.
    Norden AD, Drappatz J, Wen PY: Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 2009, 5:610–620.CrossRefPubMedGoogle Scholar
  65. 65.
    Zuniga RM, Torcuator R, Jain R, et al.: Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 2009, 91:329–336.CrossRefPubMedGoogle Scholar
  66. 66.
    Rubenstein J, Kim J, Ozawa T, et al.: Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000, 2:306–314.CrossRefPubMedGoogle Scholar
  67. 67.
    • Paez-Ribes M, Allen E, Hudock J, et al.: Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009, 15:220–231. This interesting preclinical study suggests that inhibition of VEGF results in a noninvasive phenotype. Google Scholar
  68. 68.
    • Bergers G, Hanahan D: Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008, 8:592–603. This article provides an excellent review of the mechanisms of resistance to antiangiogenic therapies. Google Scholar
  69. 69.
    Lucio-Eterovic AK, Piao Y, de Groot JF: Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res 2009, 15:4589–4599.CrossRefPubMedGoogle Scholar
  70. 70.
    Gerstner E, Chen P-J, Wen P, et al.: Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro Oncol (in press).Google Scholar
  71. 71.
    Chawla S, Poptani H, Melhem ER: Anatomic, physiologic and metabolic imaging in neuro-oncology. Cancer Treat Res 2008, 143:3–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Ullrich RT, Kracht LW, Jacobs AH: Neuroimaging in patients with gliomas. Semin Neurol 2008, 28:484–494.CrossRefPubMedGoogle Scholar
  73. 73.
    van den Bent MJ, Afra D, de Witte O, et al.: Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 2005, 366:985–990.CrossRefPubMedGoogle Scholar
  74. 74.
    Karim AB, Maat B, Hatlevoll R, et al.: A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys 1996, 36:549–556.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Patrick Y. Wen
    • 1
  • Andrew D. Norden
    • 1
  • Jan Drappatz
    • 1
  • Eudocia Quant
    • 1
  1. 1.Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center and Division of Neuro-Oncology, Department of NeurologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations