Advertisement

Current Oncology Reports

, Volume 11, Issue 5, pp 405–411 | Cite as

Inside life of melanoma cell signaling, molecular insights, and therapeutic targets

  • Jeffrey A. SosmanEmail author
  • Kim A. Margolin
Article

Abstract

Melanoma is one of the fastest growing tumor types in the United States. Immunotherapy and chemotherapy benefit only a few patients with metastatic disease. Therapy targeting a signaling pathway critical to the cancer’s growth can provide dramatic benefit in several other malignancies and may be a valuable strategy for advanced melanoma, if drugs with a favorable therapeutic index are effective against essential molecular pathways. One such target is the V600E “gain-of-function” BRAF mutation found in 60% of melanomas; other mutations or molecular alterations cooperate with V600E BRAF, particularly those that cause loss of function of PTEN, upstream of Akt and mammalian target of rapamycin. Rapid development of new agents, a better understanding of the target pathways and mechanisms of resistance, and carefully designed strategies to optimize combinations and sequences of these agents, potentially with chemotherapy or immunotherapy, may ultimately have the potential to overcome the previously insurmountable obstacle of therapy resistance in melanoma.

Keywords

Melanoma Clin Oncol Sorafenib BRAF Mutation Axitinib 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Rosenberg SA, Yang JC, Restifo NP: Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004, 10:909–915.PubMedCrossRefGoogle Scholar
  2. 2.
    Gajewski TF: Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clin Cancer Res 2006, 12:2326s–2330s.PubMedCrossRefGoogle Scholar
  3. 3.
    Mauro MJ, O’Dwyer M, Heinrich MC, Druker BJ: STI571: a paradigm of new agents for cancer therapeutics. J Clin Oncol 2002, 20:325–334.PubMedCrossRefGoogle Scholar
  4. 4.
    Heinrich MC, Corless CL, Demetri GD, et al.: Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003, 21:4342–4349.PubMedCrossRefGoogle Scholar
  5. 5.
    McLean SR, Gana-Weisz M, Hartzoulakis B, et al.: Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther 2005, 4:2008–2015.PubMedCrossRefGoogle Scholar
  6. 6.
    Baselga J, Tripathy D, Mendelsohn J, et al.: Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol 1999, 26(Suppl 12):78–83.PubMedGoogle Scholar
  7. 7.
    Dancey JE: Epidermal growth factor receptor inhibitors in non-small cell lung cancer. Drugs 2007, 67:1125–1138.PubMedCrossRefGoogle Scholar
  8. 8.
    Albino AP, Nanus DM, Mentle IR, et al.: Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 1989, 4:1363–1374.PubMedGoogle Scholar
  9. 9.
    Davies H, Bignell GR, Cox C, et al.: Mutations of the BRAF gene in human cancer. Nature 2002, 417:949–954.PubMedCrossRefGoogle Scholar
  10. 10.
    Satyamoorthy K, Li G, Gerrero MR, et al.: Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 2003, 63:756–759.PubMedGoogle Scholar
  11. 11.
    Hingorani SR, Jacobetz MA, Robertson GP, et al.: Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 2003, 63:5198–5202.PubMedGoogle Scholar
  12. 12.
    Pollock PM, Harper UL, Hansen KS, et al.: High frequency of BRAF mutations in nevi. Nat Genet 2003, 33:19–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar R, Angelini S, Snellman E, Hemminki K: BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol 2004, 122:342–348.PubMedCrossRefGoogle Scholar
  14. 14.
    Michaloglou C, Vredeveld LC, Soengas MS, et al.: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005, 436:720–724.PubMedCrossRefGoogle Scholar
  15. 15.
    Tsao H, Goel V, Wu H, et al.: Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 2004, 122:337–341.PubMedCrossRefGoogle Scholar
  16. 16.
    Guldberg P, Thor Straten P, Birck A, et al.: Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 1997, 57:3660–3663.PubMedGoogle Scholar
  17. 17.
    Wajapeyee N, Serra RW, Zhu X, et al.: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008, 132:363–374.PubMedCrossRefGoogle Scholar
  18. 18.
    Levy C, Khaled M, Fisher DE: MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006, 12:406–414.PubMedCrossRefGoogle Scholar
  19. 19.
    Ugurel S, Houben R, Schrama D, et al.: Microphthalmia-associated transcription factor gene amplification in metastatic melanoma is a prognostic marker for patient survival, but not a predictive marker for chemosensitivity and chemotherapy response. Clin Cancer Res 2007, 13:6344–6350.PubMedCrossRefGoogle Scholar
  20. 20.
    Zheng B, Jeong JH, Asara JM, et al.: Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 2009, 33:237–247.PubMedCrossRefGoogle Scholar
  21. 21.
    Curtin JA, Fridlyand J, Kageshita T, et al.: Distinct sets of genetic alterations in melanoma. N Engl J Med 2005, 353:2135–2147.PubMedCrossRefGoogle Scholar
  22. 22.
    Beadling C, Jacobson-Dunlop E, Hodi FS, et al.: KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 2008, 14:6821–6828.PubMedCrossRefGoogle Scholar
  23. 23.
    Natali PG, Nicotra MR, Di Renzo MF, et al.: Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 1993, 68:746–750.PubMedGoogle Scholar
  24. 24.
    Zhang L, Huang J, Yang N, et al.: microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 2006, 103:9136–9141.PubMedCrossRefGoogle Scholar
  25. 25.
    Sharpless E, Chin L: The INK4a/ARF locus and melanoma. Oncogene 2003, 22:3092–3098.PubMedCrossRefGoogle Scholar
  26. 26.
    Ha L, Merlino G, Sviderskaya EV: Melanomagenesis: overcoming the barrier of melanocyte senescence. Cell Cycle 2008, 7:1944–1948.PubMedGoogle Scholar
  27. 27.
    Ueda Y, Richmond A: NF-kappa B activation in melanoma. Pigment Cell Res 2006, 19:112–124.PubMedCrossRefGoogle Scholar
  28. 28.
    Richmond A: Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2002, 6:2664–2674.Google Scholar
  29. 29.
    Yang J, Pan WH, Clawson GA, Richmond A: Systemic targeting inhibitor of kappaB kinase inhibits melanoma tumor growth. Cancer Res 2007, 67:3127–3134.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Raamsdonk CD, Bezrookove V, Green G, et al.: Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009, 457:599–602.PubMedCrossRefGoogle Scholar
  31. 31.
    Adjei AA, Cohen RB, Franklin W, et al.: Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 2008, 26:2139–2146.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilhelm SM, Carter C, Tang L, et al.: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004, 64:7099–7109.PubMedCrossRefGoogle Scholar
  33. 33.
    Dummer R, Chapman PB, Sosman JA, et al.: AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, phase II study. Proc Am Soc Clin Oncol 2009 (in press).Google Scholar
  34. 34.
    Eisen T, Ahmad T, Flaherty KT, et al.: Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 2006, 95:581–586.PubMedCrossRefGoogle Scholar
  35. 35.
    Smalley KS, Xiao M, Villanueva J, et al.: CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene 2009, 28:85–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26:3291–3310.PubMedCrossRefGoogle Scholar
  37. 37.
    Flaherty K, Puzanov I, Sosman J, et al.: Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer [abstract]. J Clin Oncol 2009, 27(Suppl):9000.Google Scholar
  38. 38.
    Schwartz GK, Robertson S, Shen A, et al.: A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (Pts) with advanced solid tumors [abstract]. J Clin Oncol 2009, 27(Suppl):3513.Google Scholar
  39. 39.
    Curtin J, Busam K, Pinkel D, Bastian BC: Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006, 24:4340–4335.PubMedCrossRefGoogle Scholar
  40. 40.
    Hodi FS, Friedlander P, Corless CL, et al.: Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 2008, 26:2046–2051.PubMedCrossRefGoogle Scholar
  41. 41.
    Carvajal RD, Chapman PB, Wolchok JD, et al.: A phase II study of imatinib mesylate (IM) for patients with advanced melanoma harboring somatic alterations of KIT [abstract]. J Clin Oncol 2009, 27(Suppl):9001.Google Scholar
  42. 42.
    Bedikian A, Millward M, Pehamberger H, et al.: Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 2006, 24:4738–4745.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Division of Hematology/Oncology, Vanderbilt-Ingram Cancer CenterVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations