Current Oncology Reports

, Volume 11, Issue 4, pp 263–268 | Cite as

Translating genomics into clinical practice: Applications in lung cancer

Article

Abstract

Non-small cell lung cancer (NSCLC) is the leading cause of death from cancer worldwide and has a poor overall survival across all stages of disease. The recent advancement of gene expression technology addresses the phenotypic complexity of many diseases, including NSCLC. These genomic approaches have shown great promise in NSCLC in helping to improve risk stratification, prognosis, and the clinician’s ability to match the right therapy to an individual patient. Large prospective clinical trials are under way to evaluate the application and clinical impact of the use of genomics-based predictors of prognosis and therapy compared with current standard-of-care methods in patients with NSCLC. Several challenges of genomics-based therapy must be addressed before widespread application of these techniques becomes a reality. Genomic approaches in NSCLC have the potential to advance our understanding of underlying disease biology, to improve current prognostic and treatment paradigms, and to identify new targets for treatment, ultimately improving survival in patients with NSCLC and providing an opportunity for “personalized medicine.”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005, 55:74–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Landis SH, Murray T, Bolden S, Wingo PA: Cancer statistics, 1999. CA Cancer J Clin 1999, 49:8–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Mountain CF: Lung cancer staging classification. Clin Chest Med 1993, 14:43–53.PubMedGoogle Scholar
  4. 4.
    Bild AH, Yao G, Chang JT, et al.: Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006, 439:353–357.PubMedCrossRefGoogle Scholar
  5. 5.
    Golub TR, Slonim DK, Tamayo P, et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531–537.PubMedCrossRefGoogle Scholar
  6. 6.
    Perou CM, Sorlie T, Eisen MB, et al.: Molecular portraits of human breast tumours. Nature 2000, 406:747–752.PubMedCrossRefGoogle Scholar
  7. 7.
    Nevins JR, Potti A: Mining gene expression profiles: expression signatures as cancer phenotypes. Nat Rev Genet 2007, 8:601–609.PubMedCrossRefGoogle Scholar
  8. 8.
    Ettinger DS, Bepler G, Bueno R, et al.: Non-small cell lung cancer clinical practice guidelines in oncology. J Natl Compr Canc Netw 2006, 4:548–582.PubMedGoogle Scholar
  9. 9.
    Hoffman PC, Mauer AM, Vokes EE: Lung cancer. Lancet 2000, 355:479–485.PubMedGoogle Scholar
  10. 10.
    Zheng Z, Chen T, Li X, et al.: DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med 2007, 356:800–808.PubMedCrossRefGoogle Scholar
  11. 11.
    Potti A, Mukherjee S, Petersen R, et al.: A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 2006, 355:570–580.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen HY, Yu SL, Chen CH, et al.: A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 2007, 356:11–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Lu Y, Lemon W, Liu PY, et al.: A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006, 3:e467.PubMedCrossRefGoogle Scholar
  14. 14.
    Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33:49–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta GP, Nguyen DX, Chiang AC, et al.: Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007, 446:765–770.PubMedCrossRefGoogle Scholar
  16. 16.
    Minn AJ, Gupta GP, Padua D, et al.: Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci U S A 2007, 104:6740–6745.PubMedCrossRefGoogle Scholar
  17. 17.
    Potti A, Dressman HK, Bild A, et al.: Genomic signatures to guide the use of chemotherapeutics. Nat Med 2006, 12:1294–1300.PubMedCrossRefGoogle Scholar
  18. 18.
    Potti A, Nevins JR: Utilization of genomic signatures to direct use of primary chemotherapy. Curr Opin Genet Dev 2008, 18:62–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Schiller JH, Harrington D, Belani CP, et al.: Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002, 346:92–98.PubMedCrossRefGoogle Scholar
  20. 20.
    Breathnach OS, Freidlin B, Conley B, et al.: Twenty-two years of phase III trials for patients with advanced non-small-cell lung cancer: sobering results. J Clin Oncol 2001, 19:1734–1742.PubMedGoogle Scholar
  21. 21.
    Georgoulias V, Papadakis E, Alexopoulos A, et al.: Platinum-based and non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a randomised multicentre trial. Lancet 2001, 357:1478–1484.PubMedCrossRefGoogle Scholar
  22. 22.
    Smit EF, van Meerbeeck JP, Lianes P, et al.: Three-arm randomized study of two cisplatin-based regimens and paclitaxel plus gemcitabine in advanced non-small-cell lung cancer: a phase III trial of the European Organization for Research and Treatment of Cancer Lung Cancer Group—EORTC 08975. J Clin Oncol 2003, 21:3909–3917.PubMedCrossRefGoogle Scholar
  23. 23.
    Hsu DS, Balakumaran BS, Acharya CR, et al.: Pharmacogenomic strategies provide a rational approach to the treatment of cisplatin-resistant patients with advanced cancer. J Clin Oncol 2007, 25:4350–4357.PubMedCrossRefGoogle Scholar
  24. 24.
    Zinner RG, Fossella FV, Gladish GW, et al.: Phase II study of pemetrexed in combination with carboplatin in the first-line treatment of advanced nonsmall cell lung cancer. Cancer 2005, 104:2449–2456.PubMedCrossRefGoogle Scholar
  25. 25.
    Olaussen KA, Dunant A, Fouret P, et al.: DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006, 355:983–991.PubMedCrossRefGoogle Scholar
  26. 26.
    Cobo M, Isla D, Massuti B, et al.: Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol 2007, 25:2747–2754.PubMedCrossRefGoogle Scholar
  27. 27.
    Simon G, Sharma A, Li X, et al.: Feasibility and efficacy of molecular analysis-directed individualized therapy in advanced non-small-cell lung cancer. J Clin Oncol 2007, 25:2741–2746.PubMedCrossRefGoogle Scholar
  28. 28.
    Noble J, Ellis PM, Mackay JA, Evans WK: Second-line or subsequent systemic therapy for recurrent or progressive non-small cell lung cancer: a systematic review and practice guideline. J Thorac Oncol 2006, 1:1042–1058.PubMedCrossRefGoogle Scholar
  29. 29.
    Riedel RF, Porrello A, Pontzer E, et al.: A genomic approach to identify molecular pathways associated with chemotherapy resistance. Mol Cancer Ther 2008, 7:3141–3149.PubMedCrossRefGoogle Scholar
  30. 30.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al.: Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005, 353:123–132.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsao MS, Sakurada A, Cutz JC, et al.: Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med 2005, 353:133–144.PubMedCrossRefGoogle Scholar
  32. 32.
    Eberhard DA, Johnson BE, Amler LC, et al.: Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005, 23:5900–5909.PubMedCrossRefGoogle Scholar
  33. 33.
    Tokumo M, Toyooka S, Kiura K, et al.: The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res 2005, 11:1167–1173.PubMedGoogle Scholar
  34. 34.
    Taron M, Ichinose Y, Rosell R, et al.: Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res 2005, 11:5878–5885.PubMedCrossRefGoogle Scholar
  35. 35.
    Pao W, Wang TY, Riely GJ, et al.: KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005, 2:e17.PubMedCrossRefGoogle Scholar
  36. 36.
    Balko JM, Potti A, Saunders C, et al.: Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors. BMC Genomics 2006, 7:289.PubMedCrossRefGoogle Scholar
  37. 37.
    Bild AH, Potti A, Nevins JR: Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 2006, 6:735–741.PubMedCrossRefGoogle Scholar
  38. 38.
    Pusztai L: Chips to bedside: incorporation of microarray data into clinical practice. Clin Cancer Res 2006, 12:7209–7214.PubMedCrossRefGoogle Scholar
  39. 39.
    Shi L, Reid LH, Jones WD, et al.: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006, 24:1151–1161.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  1. 1.Department of Medicine and Institute of Genome Sciences and Policy, Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA

Personalised recommendations