Current Oncology Reports

, Volume 9, Issue 5, pp 345–352

Chronic lymphocytic leukemia: Biology and current treatment



There has been considerable recent progress in understanding of the biology of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). These accomplishments have been accompanied by progressive improvement in the management of CLL and its complications. This review summarizes these changes and provides guidelines for a comprehensive approach to patient care.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Zent CS, Kyasa MJ, Evans R, Schichman SA: Chronic lymphocytic leukemia incidence is substantially higher than estimated from tumor registry data. Cancer 2001, 92:1325–1330.PubMedCrossRefGoogle Scholar
  2. 2.
    Call TG, Phyliky RL, Noel P, et al.: Incidence of chronic lymphocytic leukemia in Olmsted County, Minnesota, 1935 through 1989, with emphasis on changes in initial stage at diagnosis. Mayo Clin Proc 1994, 69:323–328.PubMedGoogle Scholar
  3. 3.
    Muller-Hermelink HK, Catovsky D, Montserrat E, Harris NL: Chronic lymphocytic leukemia/small lymphocytic lymphoma. In Tumours of Haematopoietic and Lymphoid Tissues. Edited by Jaffe E, Harris N, Stein H, Vardiman J. Lyon: IARC Press, 2001:127–130.Google Scholar
  4. 4.
    Shanafelt TD, Byrd JC, Call TG, et al.: Narrative review: initial management of newly diagnosed, early-stage chronic lymphocytic leukemia. Ann Intern Med 2006, 145:435–447.PubMedGoogle Scholar
  5. 5.
    Thorselius M, Krober A, Murray F, et al.: Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-utilizing chronic lymphocytic leukemia independent of geographical origin and mutational status. Blood 2006, 107:2889–2894.PubMedCrossRefGoogle Scholar
  6. 6.
    Rawstron AC, Green MJ, Kuzmicki A, et al.: Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood 2002, 100:635–639.PubMedCrossRefGoogle Scholar
  7. 7.
    Marti GE, Carter P, Abbasi F, et al.: B-cell monoclonal lymphocytosis and B-cell abnormalities in the setting of familial B-cell chronic lymphocytic leukemia. Cytometry B Clin Cytom 2003, 52:1–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Nowakowski GS, Dewald GW, Hoyer JD, et al.: Interphase fluorescence in situ hybridization with an IGH probe is important in the evaluation of patients with a clinical diagnosis of chronic lymphocytic leukaemia. Br J Haematol 2005, 130:36–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Rai KR, Sawitsky A, Cronkite EP, et al.: Clinical staging of chronic lymphocytic leukemia. Blood 1975, 46:219–234.PubMedGoogle Scholar
  10. 10.
    Binet JL, Auquier A, Dighiero G, et al.: A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981, 48:198–205.PubMedCrossRefGoogle Scholar
  11. 11.
    Shanafelt TD, Geyer SM, Kay NE: Prognosis at diagnosis: integrating molecular biologic insights into clinical practice for patients with CLL. Blood 2004, 103:1202–1210.PubMedCrossRefGoogle Scholar
  12. 12.
    Damle RN, Wasil T, Fais F, et al.: Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94:1840–1847.PubMedGoogle Scholar
  13. 13.
    Hamblin T, Davis Z, Gardiner A, et al.: Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999, 94:1848–1854.PubMedGoogle Scholar
  14. 14.
    Jelinek DF, Tschumper RC, Geyer SM, et al.: Analysis of clonal B-cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B-chronic lymphocytic leukaemia. Br J Haematol 2001, 115:854–861.PubMedCrossRefGoogle Scholar
  15. 15.
    Oscier DG, Gardiner AC, Mould SJ, et al.: Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002, 100:1177–1184.PubMedGoogle Scholar
  16. 16.
    Dohner H, Stilgenbauer S, Benner A, et al.: Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000, 343:1910–1916.PubMedCrossRefGoogle Scholar
  17. 17.
    Dewald GW, Brockman SR, Paternoster SF, et al.: Chromosome anomalies detected by interphase fluorescence in situ hybridization: correlation with significant biological features of B-cell chronic lymphocytic leukaemia. Br J Haematol 2003, 121:287–295.PubMedCrossRefGoogle Scholar
  18. 18.
    Dohner H, Stilgenbauer S, James MR, et al.: 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997, 89:2516–2522.PubMedGoogle Scholar
  19. 19.
    Chen L, Widhopf G, Huynh L, et al.: Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002, 100:4609–4614.PubMedCrossRefGoogle Scholar
  20. 20.
    Nolz JC, Tschumper RC, Pittner BT, et al.: ZAP-70 is expressed by a subset of normal human B-lymphocytes displaying an activated phenotype. Leukemia 2005, 19:1018–1024.PubMedCrossRefGoogle Scholar
  21. 21.
    Castro JE, Prada CE, Loria O, et al.: ZAP-70 is a novel conditional heat shock protein 90 (Hsp90)-client protein: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis and impaired signaling in chronic lymphocytic leukemia. Blood 2005, 106:2506–2512.PubMedCrossRefGoogle Scholar
  22. 22.
    Crespo M, Bosch F, Villamor N, et al.: ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003, 348:1764–1775.PubMedCrossRefGoogle Scholar
  23. 23.
    Wiestner A, Rosenwald A, Barry TS, et al.: ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003, 101:4944–4951.PubMedCrossRefGoogle Scholar
  24. 24.
    Rassenti LZ, Huynh L, Toy TL, et al.: ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004, 351:893–901.PubMedCrossRefGoogle Scholar
  25. 25.
    Orchard JA, Ibbotson RE, Davis Z, et al.: ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 2004, 363:105–111.PubMedCrossRefGoogle Scholar
  26. 26.
    Oscier DG, Richards S, Orchard J, et al.: Prognostic factors in the UK LRF CLL4 trial [abstract]. Blood 2005, 106:2099.CrossRefGoogle Scholar
  27. 27.
    Letestu R, Le Garff-Tavernier M, Vaur D, et al.: Analysis of B-CLL with discordant ZAP-70 expression and IgVH mutational status [abstract]. Blood 2005, 106:1194.Google Scholar
  28. 28.
    Del Principe MI, Del Poeta G, Buccisano F, et al.: Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood 2006, 108:853–861.PubMedCrossRefGoogle Scholar
  29. 29.
    Deaglio S, Capobianco A, Bergui L, et al.: CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood. 2003, 102:2146–2155.PubMedCrossRefGoogle Scholar
  30. 30.
    Ibrahim S, Keating M, Do KA, et al.: CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 2001, 98:181–186.PubMedCrossRefGoogle Scholar
  31. 31.
    Guarini A, Gaidano G, Mauro FR, et al.: Chronic lymphocytic leukemia patients with highly stable and indolent disease show distinctive phenotypic and genotypic features. Blood 2003, 102:1035–1041.PubMedCrossRefGoogle Scholar
  32. 32.
    Damle R, Wasil T, Fais F, et al.: Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94:1840–1847.PubMedGoogle Scholar
  33. 33.
    Hamblin TJ, Orchard JA, Ibbotson RE, et al.: CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002, 99:1023–1029.PubMedCrossRefGoogle Scholar
  34. 34.
    Zent CS, Slager SL, Ding W, et al.: Autoimmune cytopenias in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL): The clinical implications of earlier diagnosis and longer follow up [abstract]. Blood 2006, 108:790a.Google Scholar
  35. 35.
    Kyasa MJ, Parrish RS, Schichman SA, Zent CS: Autoimmune cytopenia does not predict poor prognosis in chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Hematol 2003, 74:1–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Mauro F, Foa R, Cerretti R, et al.: Autoimmune hemolytic anemia in chronic lymphocytic leukemia: clinical, therapeutic, and prognostic features. Blood 2000, 95:2786–2792.PubMedGoogle Scholar
  37. 37.
    Cheson BD, Bennett JM, Grever M, et al.: National Cancer Institute-Sponsored Working Group guidelines for chronic lymphocytic leukemia: Revised guidelines for diagnosis and treatment. Blood 1996, 87:4990–4997.PubMedGoogle Scholar
  38. 38.
    Lee YK, Bone ND, Strege AK, et al.: VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 2004, 104:788–794.PubMedCrossRefGoogle Scholar
  39. 39.
    Shanafelt TD, Lee YK, Call TG, et al.: Clinical effects of oral green tea extracts in four patients with low grade B-cell malignancies. Leuk Res 2006, 30:707–712.PubMedCrossRefGoogle Scholar
  40. 40.
    Zent CS, Bone ND, Call TG, et al.: Alemtuzumab and rituximab for therapy of patents with early stage high risk CLL: report of a planned Interim Analysis. Blood 2006, 108:800a–801a.Google Scholar
  41. 41.
    Rai KR, Peterson BL, Appelbaum FR, et al.: Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med 2000, 343:1750–1757.PubMedCrossRefGoogle Scholar
  42. 42.
    Bellosillo B, N V, Colomer D, et al.: In vitro evaluation of fludarabine in combination with cyclophosphamide and/or mitoxantrone in B-cell chronic lymphocytic leukemia. Blood 1999, 94:2836–2843.PubMedGoogle Scholar
  43. 43.
    Yamauchi T, Nowak BJ, Keating MJ, Plunkett W: DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophosphamide is inhibited by fludarabine and clofarabine. Clin Cancer Res 2001, 7:3580–3589.PubMedGoogle Scholar
  44. 44.
    O’Brien SM, Kantarjian HM, Cortes J, et al.: Results of the fludarabine and cyclophosphamide combination regimen in chronic lymphocytic leukemia. J Clin Oncol 2001, 19:1414–1420.PubMedGoogle Scholar
  45. 45.
    Eichhorst BF, Busch R, Hopfinger G, et al.: Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood 2006, 107:885–891.PubMedCrossRefGoogle Scholar
  46. 46.
    Flinn IW, Neuberg DS, Grever MR, et al.: Phase III trial of fludarabine plus cyclophosphamide compared with fludarabine for patients with previously untreated chronic lymphocytic leukemia: US Intergroup Trial E2997. J Clin Oncol 2007, 25:1–6.CrossRefGoogle Scholar
  47. 47.
    Byrd JC, Rai K, Peterson BL, et al.: Addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood 2005, 105:49–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Keating MJ, O’Brien S, Albitar M, et al.: Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005, 23:4079–4088.PubMedCrossRefGoogle Scholar
  49. 49.
    Kay NE, Geyer SM, Call TG, et al.: Combination chemoimmunotherapy with pentostatin, cyclophosphamide and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B-chronic lymphocytic leukemia. Blood 2007, 109:405–411.PubMedCrossRefGoogle Scholar
  50. 50.
    Rawstron AC, Villamor N, Ritgen M, et al.: International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 2007, 21:956–964.PubMedGoogle Scholar
  51. 51.
    Moreton P, Kennedy B, Lucas G, et al.: Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol 2005, 23:2971–2979.PubMedCrossRefGoogle Scholar
  52. 52.
    Wierda W, O’Brien S, Wen S, et al.: Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol 2005, 23:4070–4078.PubMedCrossRefGoogle Scholar
  53. 53.
    Gribben JG: Salvage therapy for CLL and the role of stem cell transplantation. Hematology 2005:292–298.Google Scholar
  54. 54.
    Faderl S, Thomas DA, O’Brien S, et al.: Experience with alemtuzumab plus rituximab in patients with relapsed and refractory lymphoid malignancies. Blood 2003, 101:3413–3415.PubMedCrossRefGoogle Scholar
  55. 55.
    Byrd JC, Lin TS, Dalton JT, et al.: Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 2007, 109:399–404.PubMedCrossRefGoogle Scholar
  56. 56.
    Chanan-Khan A, Miller KC, DiMiceli L, et al.: Antileukemic effects of lenalidomide (Revlimid) in patients with relapsed or refractory chronic lymphocytic leukemia: results of a pilot phase II study. Leuk Lymphoma 2005, 46(Suppl 1):S96–S97.Google Scholar
  57. 57.
    Coffier B, Tilly H, Pedersen LM, et al.: A novel, fully human, anti-CD20 monoclonal antibody. First results from an ongoing phase I/II trial in patients with chronic lymphocytic leukemia. Leuk Lymphoma 2005, 46(suppl 1):S96–S97.Google Scholar
  58. 58.
    Caballero D, Garcia-Marco JA, Martino R, et al.: Allogeneic transplant with reduced intensity conditioning regimens may overcome the poor prognosis of B-cell chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene and chromosomal abnormalities (11q-and 17p-). Clin Cancer Res 2005, 11:7757–7763.PubMedCrossRefGoogle Scholar
  59. 59.
    Ritgen M, Stilgenbauer S, Von Neuhoff N, et al.: Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leuekmia with unmutated immunoglobulin variable heavy chain gene status: implications of minimal residual disease measurement with quantitative PCR. Blood 2004, 104:2600–2602.PubMedCrossRefGoogle Scholar
  60. 60.
    Paneesha S, Milligan DW: Stem cell transplantation for chronic lymphocytic leukaemia. Br J Haematol 2005, 128:145–152.PubMedCrossRefGoogle Scholar
  61. 61.
    Sorror ML, Maris MB, Sandmaier BM, et al.: Hematopoietic cell transplantation after nonmyeloablative conditioning for advanced chronic lymphocytic leukemia. J Clin Oncol 2005, 23:3819–3829.PubMedCrossRefGoogle Scholar
  62. 62.
    Montserrat E, Moreno C, Esteve J, et al.: How we treat refractory chronic lymphocytic leukemia. Blood 2006, 107:1276–1283.PubMedCrossRefGoogle Scholar
  63. 63.
    Dreger P, Brand R, Milligan D, et al.: Reduced-intensity conditioning lowers treatment-related mortality of allogeneic stem cell transplantation for chronic lymphocytic leukemia: a population-matched analysis. Leukemia 2005, 19:1029–1033.PubMedCrossRefGoogle Scholar
  64. 64.
    Delgado J, Thomson K, Russell N, et al.: Results of alemtuzumab-based reduced-intensity allogeneic transplantation for chronic lymphocytic leukemia: a British Society of Blood and Marrow Transplantation study. Blood 2006, 107:1724–1730.PubMedCrossRefGoogle Scholar
  65. 65.
    Milligan DW, Fernandes S, Dasgupta R, et al.: Results of the MRC pilot study show autografting for younger patients with chronic lymphocytic leukemia is safe and achieves a high percentage of molecular responses. Blood 2005, 105:397–404.PubMedCrossRefGoogle Scholar
  66. 66.
    Gribben JG, Zahrieh D, Stephans K, et al.: Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia. Blood 2005, 106:4389–4396.PubMedCrossRefGoogle Scholar
  67. 67.
    Morrison V: The infectious complications of chronic lymphocytic leukemia. Semin Oncol 1998, 25:98–106.PubMedGoogle Scholar
  68. 68.
    Sinisalo M, Aittoniemi J, Kayhty H, Vilpo J: Vaccination against infections in chronic lymphocytic leukemia. Leuk Lymphoma 2003, 44:649–652.PubMedCrossRefGoogle Scholar
  69. 69.
    Ljungman P, Nahi H, Linde A: Vaccination of patients with haematological malignancies with one or two doses of influenza vaccine: a randomised study. Br J Haematol 2005, 130:96–98.PubMedCrossRefGoogle Scholar
  70. 70.
    Morrison VA: Infections in patients with chronic lymphocytic leukemia. In Chronic Lymphocytic Leukemias, end 2, Edited by Cheson BD. New York: Marcel Dekker; 2001:505–523.Google Scholar
  71. 71.
    Diehl L, Ketchum L: Autoimmune disease and chronic lymphocytic leukemia: Autoimmune hemolyticanemia, pure red cell aplasia, and autoimmune thrombocytopenia. Semin Oncol 1998, 25:80–97.PubMedGoogle Scholar
  72. 72.
    Giles F, O’Brien S, Keating M: Chronic lymphocytic leukemia in (Richter’s) transformation. Semin Oncol 1998, 25:117–125.PubMedGoogle Scholar
  73. 73.
    Kyasa MJ, Hazlett L, Parrish RS, et al.: Veterans with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) have a markedly increased rate of second malignancy, which is the most common cause of death. Leuk Lymphoma 2004, 45:507–513.PubMedCrossRefGoogle Scholar
  74. 74.
    Hisada M, Biggar R, Greene M, et al.: Solid tumors after chronic lymphocytic leukemia. Blood 2001, 98:1979–1981.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  1. 1.Division of HematologyMayo Clinic College of MedicineRochesterUSA

Personalised recommendations