Current Oncology Reports

, Volume 7, Issue 5, pp 323–332 | Cite as

Advances in the molecular genetics of acute leukemia

  • Joseph M. Scandura


Acute leukemias are characterized by the unrestrained clonal proliferation of hematopoietic precursor cells coupled with aberrant or arrested differentiation. The molecular basis of hematopoiesis and leukemogenesis is still being defined, yet it is increasingly evident that acute leukemias have recurrent molecular features that can be exploited for diagnostic, prognostic, and therapeutic purposes. Modern molecular technologies already influence treatment strategies for these diseases, and it is likely that as such technology matures it will have an increasing impact on all aspects of acute leukemia management. This article reviews recent developments in the molecular classification, prognostication, and treatment of the acute leukemias.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris NL, Jaffe ES, Diebold J, et al.: World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 1999, 17:3835–3849.PubMedGoogle Scholar
  2. 2.
    Mrozek K, Heerema NA, Bloomfield CD: Cytogenetics in acute leukemia. Blood Rev 2004, 18:115–136.PubMedCrossRefGoogle Scholar
  3. 3.
    Scandura JM, Boccuni P, Cammenga J, Nimer SD: Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002, 21:3422–3444.PubMedCrossRefGoogle Scholar
  4. 4.
    Golub TR, Slonim DK, Tamayo P, et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531–537. This article is proof of principle that gene expression patterns can be used to classify human disease.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross ME, Mahfouz R, Onciu M, et al.: Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004, 104:3679–3687.PubMedCrossRefGoogle Scholar
  6. 6.
    Armstrong SA, Staunton JE, Silverman LB, et al.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002, 30:41–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Moos PJ, Raetz EA, Carlson MA, et al.: Identification of gene expression profiles that segregate patients with childhood leukemia. Clin Cancer Res 2002, 8:3118–3130.PubMedGoogle Scholar
  8. 8.
    Yeoh EJ, Ross ME, Shurtleff SA, et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1:133–143. Demonstrates that the gene expression patterns of diagnostic ALL samples cluster with known clinical and cytogenetic features of the disease.PubMedCrossRefGoogle Scholar
  9. 9.
    Valk PJ, Verhaak RG, Beijen MA, et al.: Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004, 350:1617–1628. Demonstrates that the gene expression patterns of diagnostic AML samples cluster with known clinical and cytogenetic features of the disease.PubMedCrossRefGoogle Scholar
  10. 10.
    Li J, Liu H, Downing JR, Yeoh AE, Wong L: Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics 2003, 19:71–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell SA, Brown KM, Henry MM, et al.: Inter-platform comparability of microarrays in acute lymphoblastic leukemia. BMC Genomics 2004, 5:71.PubMedCrossRefGoogle Scholar
  12. 12.
    Mantripragada KK, Buckley PG, de Stahl TD, Dumanski JP:Genomic microarrays in the spotlight. Trends Genet 2004, 20:87–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Rubio-Moscardo F, Climent J, Siebert R, et al.: Mantle cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood 2005, 105:4445–4454.PubMedCrossRefGoogle Scholar
  14. 14.
    Ushijima T: Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 2005, 5:223–231.PubMedCrossRefGoogle Scholar
  15. 15.
    Scholz C, Nimmrich I, Burger M, et al.: Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis. Ann Hematol 2005, 84:236–244PubMedCrossRefGoogle Scholar
  16. 16.
    Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, et al.:Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 2004, 104:2492–2498.PubMedCrossRefGoogle Scholar
  17. 17.
    Issa JP: CpG island methylator phenotype in cancer. Nat Rev Cancer 2004, 4:988–993.PubMedCrossRefGoogle Scholar
  18. 18.
    Sternberg DW, Licht JD: Therapeutic intervention in leukemias that express the activated fms-like tyrosine kinase 3 (FLT3): opportunities and challenges. Curr Opin Hematol 2005, 12:7–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Bardelli A, Parsons DW, Silliman N, et al.: Mutational analysis of the tyrosine kinome in colorectal cancers. Science 2003, 300:949.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaiser J: National Institutes of Health. NCI gears up for cancer genome project. Science 2005, 307:1182.PubMedCrossRefGoogle Scholar
  21. 21.
    Bullinger L, Dohner K, Bair E, et al.: Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004, 350:1605–1616. Demonstrates that the gene expression patterns of diagnostic AML samples cluster with known clinical and cytogenetic features of the disease.PubMedCrossRefGoogle Scholar
  22. 22.
    Chiaretti S, Li X, Gentleman R, et al.: Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2004, 103:2771–2778.PubMedCrossRefGoogle Scholar
  23. 23.
    Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730–737.PubMedCrossRefGoogle Scholar
  24. 24.
    Oshima Y, Ueda M, Yamashita Y, et al.: DNA microarray analysis of hematopoietic stem cell-like fractions from individuals with the M2 subtype of acute myeloid leukemia. Leukemia 2003, 17:1990–1997.PubMedCrossRefGoogle Scholar
  25. 25.
    Campana D: Minimal residual disease studies in acute leukemia. Am J Clin Pathol 2004, 122(Suppl):S47–57.PubMedGoogle Scholar
  26. 26.
    Pane F, Cimino G, Izzo B, et al.: Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia 2005, 19:628–635.PubMedGoogle Scholar
  27. 27.
    Jurcic JG: Monitoring PML-RARalpha in acute promyelocytic leukemia. Curr Oncol Rep 2003, 5:391–398.PubMedCrossRefGoogle Scholar
  28. 28.
    Pui CH, Relling MV, Sandlund JT, et al.: Rationale and design of Total Therapy Study XV for newly diagnosed childhood acute lymphoblastic leukemia. Ann Hematol 2004, 83(Suppl 1):S124-S126.PubMedGoogle Scholar
  29. 29.
    Mulford DA, Maslak PG, Weiss MA, et al.: Reducing standard postremission chemotherapy in acute promyelocytic leukemia (APL) with risk-adapted therapy. Blood 2003, 102:619a-620a.Google Scholar
  30. 30.
    Frohling S, Schlenk RF, Breitruck J, et al.: Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002, 100:4372–4380.PubMedCrossRefGoogle Scholar
  31. 31.
    Frohling S, Schlenk RF, Stolze I, et al.: CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004, 22:624–633.PubMedCrossRefGoogle Scholar
  32. 32.
    Cilloni D, Carturan S, Gottardi E, et al.: Down-modulation of the C/EBPalpha transcription factor in core binding factor acute myeloid leukemias. Blood 2003, 102:2705–2706.PubMedCrossRefGoogle Scholar
  33. 33.
    Pabst T, Mueller BU, Harakawa N, et al.: AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001, 7:444–451.PubMedCrossRefGoogle Scholar
  34. 34.
    Zheng R, Friedman AD, Levis M, et al.: Small D: Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 2004, 103:1883–1890.PubMedCrossRefGoogle Scholar
  35. 35.
    Lodie TA, Radomska HS, Donato JD, et al.: PML-RARalpha induces ATRA-sensitive delocalization of the critical granulocytic differentiation factor C/EBPalpha to a microspecked nuclear pattern in t(15;17) APL. Blood 1999, 94:692a.Google Scholar
  36. 36.
    WengAP, Ferrando AA, Lee W, et al.: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004, 306:269–271. This article reports common activating mutations in NOTCH1 and presents a rationale for a new clinical strategy for the treatment of T-cell ALL.PubMedCrossRefGoogle Scholar
  37. 37.
    Den Boer ML, Harms DO, Pieters R, et al.: Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003, 21:3262–3268. The authors identify gene signatures in diagnostic bone marrow cells that are associated with resistance to specific chemotherapy drugs.CrossRefGoogle Scholar
  38. 38.
    Holleman A, Cheok MH, den Boer ML, et al.: Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004, 351:533–542.PubMedCrossRefGoogle Scholar
  39. 39.
    Leith CP, Kopecky KJ, Godwin J, et al.: Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997, 89:3323–3329.PubMedGoogle Scholar
  40. 40.
    Casale F, D’Angelo V, Addeo R, et al.: P-glycoprotein 170 expression and function as an adverse independent prognostic factor in childhood acute lymphoblastic leukemia. Oncol Rep 2004, 12:1201–1207.PubMedGoogle Scholar
  41. 41.
    Greenberg PL, Lee SJ, Advani R, et al.: Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 2004, 22:1078–1086.PubMedCrossRefGoogle Scholar
  42. 42.
    Galmarini CM, Thomas X, Calvo F, et al.: Potential mechanisms of resistance to cytarabine in AML patients. Leuk Res 2002, 26:621–629.PubMedCrossRefGoogle Scholar
  43. 43.
    Stam RW, den Boer ML, Meijerink JP, et al.: Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003, 101:1270–1276.PubMedCrossRefGoogle Scholar
  44. 44.
    Yates CR, Krynetski EY, Loennechen T, et al.: Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997, 126:608–614.PubMedGoogle Scholar
  45. 45.
    Urano W, Taniguchi A, Yamanaka H, et al.: Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 2002, 12:183–190.PubMedCrossRefGoogle Scholar
  46. 46.
    Byrd JC, Mrozek K, Dodge RK, et al.: Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002, 100:4325–4336.PubMedCrossRefGoogle Scholar
  47. 47.
    Slovak ML, Kopecky KJ, Cassileth PA, et al.: Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000, 96:4075–4083.PubMedGoogle Scholar
  48. 48.
    Grimwade D, Walker H, Oliver F, et al.: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998, 92:2322–2333.PubMedGoogle Scholar
  49. 49.
    Care RS, Valk PJ, Goodeve AC, et al.: Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 2003, 121:775–777.PubMedCrossRefGoogle Scholar
  50. 50.
    Beghini A, Peterlongo P, Ripamonti CB, et al.: C-kit mutations in core binding factor leukemias. Blood 2000, 95:726–727.PubMedGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Joseph M. Scandura
    • 1
  1. 1.Memorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations