Current Oncology Reports

, Volume 4, Issue 4, pp 325–333 | Cite as

Angiogenesis inhibitors in lung cancer

  • Edward S. Kim
  • Roy S. Herbst
Article

Abstract

Lung cancer is a major public health problem and the leading cause of cancer-related death worldwide. Its survival rates have changed little over the past 20 years. The best clinical benefit (ie, survival rates) with combination cytotoxic therapies in non-small-cell lung cancer (NSCLC) may have been reached. The need for improved survival rates in NSCLC has driven the development of novel, rationally designed, targeted therapies. Inhibitors of angiogenesis have been developed and are increasingly studied. Potential targets for therapy include inhibitors of vascular endothelial growth factor receptor, endogenous angiogenesis inhibitors, and cyclooxygenase inhibitors. Combining targeted molecules with traditional cytotoxic therapies usually results in lower required chemotherapy doses and fewer, less severe side effects. A number of ongoing randomized studies are underway to evaluate this idea. It is anticipated that these new targeted therapies will play an important role, along with cytotoxic and radiation therapies, in the management of metastatic disease.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Greenlee RT, Hill-Harmon MB, Murray T, et al.: Cancer statistics. CA Cancer J Clin 2001, 1:15–36.CrossRefGoogle Scholar
  2. 2.
    Mountain CF, Lukeman JM, Hammar SP, et al.: Lung cancer classification: the relationship of disease extent and cell type to survival in a clinical trials population. J Surg Oncol 1987, 35:147–156.PubMedCrossRefGoogle Scholar
  3. 3.
    Alberti W, Anderson G, Bartolucci A, et al.: Chemotherapy in non-small cell lung cancer: a meta-analysis using update data on individual patients from 52 randomized clinical trials. BMJ 1995, 311:899.Google Scholar
  4. 4.
    Mountain CF: A new international staging system for lung cancer. Chest 1986, 89:225–233.Google Scholar
  5. 5.
    Bulzebruck H, Bopp R, Drings P, et al.: New aspects in the staging of lung cancer: prospective validations of the International Union Against Cancer TNM classification. Cancer 1992, 70:1102–1110.PubMedCrossRefGoogle Scholar
  6. 6.
    Schiller JH, Harrington D, Sandler A, et al.: A randomized phase III trial of four chemotherapy regimens in advanced non-small cell lung cancer (NSCLC) [abstract]. Proc ASCO 2000, 19:1a.Google Scholar
  7. 7.
    Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1989, 82:4–6. A review of angiogenesis and tumor biology.CrossRefGoogle Scholar
  8. 8.
    Hori A, Sasada R, Matsutani E, et al.: Suppression of solid tumor growth by immuno-neutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 1991, 51:6180–6184.PubMedGoogle Scholar
  9. 9.
    Kim KJ, Li B, Winer J, et al.: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 1993, 362:841–844.PubMedCrossRefGoogle Scholar
  10. 10.
    Liotta LA: Molecular biology of metastases: a review of recent approaches. Mol Cell Endocrinol 1995, 110:205–211.CrossRefGoogle Scholar
  11. 11.
    Chodak GW, Haudenschild C, Gittes RF, et al.: Angiogenic activity as a marker of neoplasia and preneoplasia in lesions of the human bladder. Ann Surg 1980, 1:762–771.CrossRefGoogle Scholar
  12. 12.
    Fontanini G, Vignati S, Bigini D, et al.: Epidermal growth factor receptor (EGFr) expression in non-small cell lung carcinomas correlates with metastatic involvement of hilar and mediastinal lymph nodes in the squamous subtype. Eur J Cancer 1995, 31A:178–183.PubMedCrossRefGoogle Scholar
  13. 13.
    Sikora J, Slodkowski J, Radomyski A, et al.: Immunohistochemical evaluation of tumour angiogenesis in adenocarcinoma and squamous cell carcinoma of lung. Rocz Akad Med Bialymst 1997, 42(suppl 1):271–279.PubMedGoogle Scholar
  14. 14.
    Fidler IJ: Cancer biology: invasion and metastasis. In Clinical Oncology, edn 2. Edited by Abeloff MD, Armitage JO, Lichter AS, Niederhuber JE. St. Louis, MO: Churchill Livingstone; 2000:29–53.Google Scholar
  15. 15.
    Fontanini G, Lucchi M, Vignati S, et al.: Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst 1997, 89:881–886. Study analyzing angiogenesis and its role in NSCLC.PubMedCrossRefGoogle Scholar
  16. 16.
    Fontanini G, Vignati S, Boldrini L, et al.: Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma. Clin Cancer Res 1997, 3:861–865.PubMedGoogle Scholar
  17. 17.
    Macchiarini P, Fontanini G, Dulmet E, et al.: Angiogenesis: an indicator of metastasis in non-small cell lung cancer invading the thoracic inlet. Ann Thorac Surg 1994, 57:1534–1539.PubMedCrossRefGoogle Scholar
  18. 18.
    Volm M, Mattern J, Koomagi R: Expression of platelet-derived endothelial cell growth factor in non-small cell lung carcinomas: relationship to various biological factors. Int J Oncol 1998, 13:975–979.PubMedGoogle Scholar
  19. 19.
    Ferrara N: Molecular and biological properties of vascular endothelial growth factor. J Mol Med 1999, 77:527–543.PubMedCrossRefGoogle Scholar
  20. 20.
    Millauer B, Wizigmann-Voos S, Schnurch H, et al.: High affinity VEGF binding and developmental expression suggest FLK-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993, 72:835–846.PubMedCrossRefGoogle Scholar
  21. 21.
    Guo D, Jia Q, Song HY, et al.: Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains: association with endothelial cell proliferation. J Biol Chem 1995, 270:6729–6733.PubMedCrossRefGoogle Scholar
  22. 22.
    Waltenberger J, Claesson-Welsh L, Siegbahn A, et al.: Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994, 269:26988–26995.PubMedGoogle Scholar
  23. 23.
    Millauer B, Longhi MP, Plate KH, et al.: Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res 5 1996, 6:1615–1620.Google Scholar
  24. 24.
    Kukk E, Lymboussaki A, Taira S, et al.: VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996, 122:3829–3837.PubMedGoogle Scholar
  25. 25.
    Warren RS, Yuan H, Matli MR, et al.: Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1ii5, 95:1789–1797.Google Scholar
  26. 26.
    Presta LG, Chen H, O’Connor SJ, et al.: Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997, 57:4593–4599.PubMedGoogle Scholar
  27. 27.
    Margolin K, Gordon MS, Talpaz M, et al.: Phase Ib trial of intravenous (iv) recombinant humanized monoclonal antibody (Mab) to vascular endothelial growth factor (rhuMAb-VEGF) in combination with chemotherapy (ChRx) in patients (pts) with advanced cancer (CA): pharmacologic and long-term safety data [abstract]. Proc ASCO 1999, 18:1678.Google Scholar
  28. 28.
    Gordon MS, Talpaz M, Margolin K, et al.: Phase I trial of recombinant humanized monoclonal anti-vascular endothelial growth factor (anti-VEGF MAb) in patients (pts) with metastatic cancer [abstract]. Proc ASCO 1998, 17:210a.Google Scholar
  29. 29.
    Margolin K, Gordon MS, Holmgren E, et al.: Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol 2001, 19:851–856.PubMedGoogle Scholar
  30. 30.
    DeVore RF, Fehrenbacher RS, Herbst RS, et al.: A randomized phase II trial comparing rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial cell growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC [abstract]. Proc ASCO 2000, 19:485a.Google Scholar
  31. 31.
    Johnson DH, Devore R, Kabbinavar F, et al.: Carboplatin (C) + paclitaxel (T) + rhumab-VEGF (AVF) may prolong survival in advanced non-squamous lung cancer [abstract]. Proc ASCO 2001, 19:1256.Google Scholar
  32. 32.
    Jayson GC, Mulatero C, Ranson M, et al.: Anti-VEGF antibody HuMV833: An EORTC biological treatment development group phase I toxicity, pharmacokinetic and pharmacodynamic study [abstract]. Proc ASCO 2001, 19:14.Google Scholar
  33. 33.
    Inoue K, Slaton JW, Davis DW, et al.: Treatment of human metastatic transitional cell carcinoma of the bladder in a murine model with the anti-vascular endothelial growth factor receptor monoclonal antibody DC101 and paclitaxel. Clin Cancer Res 2000, 6:2635–2643.PubMedGoogle Scholar
  34. 34.
    Rockwell P, Witte L, Hicklin D, et al.: Antitumor activity of anti-flk-1 monoclonal antibodies [abstract]. Proc Annu Meet Am Assoc Cancer Res 1997, 38:266.Google Scholar
  35. 35.
    Prewett M, Huber J, Li Y, et al.: Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999, 59:5209–5218.PubMedGoogle Scholar
  36. 36.
    Klement G, Baruchel S, Rak J, et al.: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000, 105:R15-R24.PubMedCrossRefGoogle Scholar
  37. 37.
    Fong TA, Shawver LK, Sun L, et al.: SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999, 59:99–106.PubMedGoogle Scholar
  38. 38.
    Angelov L, Salhia B, Roncari L, et al.: Inhibition of angiogenesis by blocking activation of the vascular endothelial growth factor receptor 2 leads to decreased growth of neurogenic sarcomas. Cancer Res 1999, 59:5536–5541.PubMedGoogle Scholar
  39. 39.
    Shaheen RM, Davis DW, Liu W, et al.: Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res 1999, 59:5412–5416.PubMedGoogle Scholar
  40. 40.
    Mendel DB, Schreck RE, West DC, et al.: The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 2000, 6:4848–4858.PubMedGoogle Scholar
  41. 41.
    Rosen LS, Kabbinavar F, Rosen P, et al.: Phase I trial of SU5416, a novel angiogenesis inhibitor in patients with advanced malignancies [abstract]. Proc ASCO 1998, 17:843.Google Scholar
  42. 42.
    Vajkoczy P, Thurnher A, Hirth KP, et al.: Measuring VEGF-Flk-1 activity and consequences of VEGF-Flk-1 targeting in vivo using intravital microscopy: clinical applications. Oncologist 2000, 5(suppl 1):16–19.PubMedCrossRefGoogle Scholar
  43. 43.
    Rosen L, Mulay M, Mayers A, et al.: Phase I dose-escalating trial of SU5416, a novel angiogenesis inhibitor in patients with advanced malignancies [abstract]. Proc ASCO 1999, 18:161a.Google Scholar
  44. 44.
    Cropp GF, Hannah AL: SU5416, a molecularly targeted novel anti-angiogenesis drug: clinical pharmacokinetics and safety review [abstract]. Proceedings of the 11th NCI-EORTC-AACR Symposium on New Drugs in Cancer Therapy. Clin Cancer Res 2000, 6(suppl).Google Scholar
  45. 45.
    Miles S, Arasteh K, Gill P, et al.: A multicenter dose-escalating study of SU5416 in AIDS-related Kaposi’s sarcoma [abstract]. Proc ASCO 2000, 19:176a.Google Scholar
  46. 46.
    Rosen PJ, Amado R, Hecht JR, et al.: A phase I/II study of SU5416 in combination with 5-FU/leucovorin in patients with metastatic colorectal cancer [abstract]. Proc ASCO 2000, 19:5d.Google Scholar
  47. 47.
    Giaccone G, Rosen L, Kuene B, et al.: Dose finding study of cisplatin, gemcitabine, and SU5416 in patients with advanced malignancies [abstract]. Proceedings of the 11th NCI EORTC AACR Symposium on New Drugs in Cancer Therapy. Clin Cancer Res 2000, 6(suppl):263.Google Scholar
  48. 48.
    Wedge SR, Ogilvie DJ, Dukes M, et al.: VEGF receptor tyrosine kinase. Proc Annu Meet Am Assoc Cancer Res 2000, 41:566.Google Scholar
  49. 49.
    Basser R, Hurwitz H, Barge A, et al.: Phase I pharmacokinetic and biological study of the angiogenesis inhibitor, ZD6474, in patients with solid tumors [abstract]. Proc ASCO 2001, 19:396.Google Scholar
  50. 50.
    Laird AD, Vajkoczy P, Shawver LK, et al.: SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res 2000, 60:4152–4160.PubMedGoogle Scholar
  51. 51.
    Rosen LS, Rosen PJ, Kabbinavar F, et al.: Phase I experience with SU6668, a novel multiple receptor tyrosine kinase inhibitor in patients with advanced malignancies [abstract]. Proc ASCO 2001, 19:383.Google Scholar
  52. 52.
    Rosen L, Hannah A, Rosen P, et al.: Phase I experience with oral SU6668, a novel multiple receptor tyrosine kinase inhibitor in patients with advanced malignancies [abstract]. Clin Cancer Res 2000, 6(suppl):458.Google Scholar
  53. 53.
    Chen C, Parangi S, Tolentino MJ, et al.: A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 1995, 55:4230–4233.PubMedGoogle Scholar
  54. 54.
    O’Reilly MS, Boehm T, Shing Y, et al.: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1979, 88:277–285. A nice review of an early angiogenic agent, endostatin.CrossRefGoogle Scholar
  55. 55.
    Baidas S, Bhargava P, Isaacs C, et al.: Phase I study of the combination of TNP-470 and paclitaxel in patients with advanced cancer [abstract]. Proc ASCO 2000, 19:800.Google Scholar
  56. 56.
    Herbst RS, Tran HT, Madden TL, et al.: Phase I study of the angiogenesis inhibitor TNP-470 (T) in combination with paclitaxel (P) in patients with solid tumors [abstract]. Proc ASCO 2000, 19:707.Google Scholar
  57. 57.
    Sugarbaker E, Thornwaite J, Ketcham A: Inhibitory effect of a primary tumor on metastasis. In Progress in Cancer Research and Therapy. Edited by Day S, Myers P, et al. New York: Raven Press; 1977:227–240.Google Scholar
  58. 58.
    Koike A, Moore GE, Mendoza CB, et al.: Heterologous, homologous, and autologous transplantation of human tumors. Cancer 1963, 16:1065–1071.PubMedCrossRefGoogle Scholar
  59. 59.
    O’Reilly M, Holgren L, Shing Y, et al.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994, 79:315–328.PubMedCrossRefGoogle Scholar
  60. 60.
    Boehm T, Folkman J, Browder T, et al.: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997, 390:404–407.PubMedCrossRefGoogle Scholar
  61. 61.
    Fogler WE, Song M, Supko JG, et al.: Recombinant human endostatin demonstrates consistent and predictable pharmacokinetics following intravenous bolus administration to cancer patients [abstract]. Proc ASCO 2001, 19:274.Google Scholar
  62. 62.
    Eder JP, Clark JW, Supko JG, et al.: A phase I pharmacokinetic and pharmacodynamic trial of recombinant human endostatin [abstract]. Proc ASCO 2001, 20:275.Google Scholar
  63. 63.
    Herbst RS, Tran HT, Mullani NA, et al.: Phase I clinical trial of recombinant human endostatin (rHE) in patients (pts) with solid tumors: pharmacokinetic, safety and efficacy analysis using surrogate endpoints of tissue and radiologic response [abstract]. Proc ASCO 2001, 20:9.Google Scholar
  64. 64.
    Thomas JP, Shiller J, Lee F, et al.: A phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin [abstract]. Proc ASCO 2001, 20:276.Google Scholar
  65. 65.
    Black WR, Agner RC: Tumor regression after endostatin therapy. Nature 1998, 391:450. A review of endostatin therapy in solid tumors.PubMedCrossRefGoogle Scholar
  66. 66.
    Volm M, Mattern J, Koomagi R, et al.: Angiostatin expression in non-small cell lung cancer. Clin Cancer Res 2000, 6:3236–3240.PubMedGoogle Scholar
  67. 67.
    O’Reilly MS, Holmgren L, Chen CC, et al.: Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996, 2:689–692.PubMedCrossRefGoogle Scholar
  68. 68.
    Mauceri HJ, Hanna NN, Beckett MA, et al.: Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998, 394:287–291.PubMedCrossRefGoogle Scholar
  69. 69.
    Demoraes ED, Fogler WE, Grant D, et al.: Recombinant human angiostatin (rhA): a phase I clinical trial assessing safety, pharmacokinetics (PK) and pharmacodynamics (PD) [abstract]. Proc ASCO 2001, 20:10.Google Scholar
  70. 70.
    Ingber D, Fujita T, Kishimoto S, et al.: Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 1990, 348:555–557.PubMedCrossRefGoogle Scholar
  71. 71.
    Parangi S, O’Reilly M, Christofori G, et al.: Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A 1996, 93:2002–2007.PubMedCrossRefGoogle Scholar
  72. 72.
    Mysliwski A, Szmit E, Szatkowski D, et al.: Suppression of growth of Bomirski Ab melanoma and its metastasis in hamsters by angiogenesis inhibitor TNP-470. Anticancer Res 1998, 18:441–443.PubMedGoogle Scholar
  73. 73.
    Ohta Y, Watanabe Y, Tabata T, et al.: Inhibition of lymph node metastasis by an anti-angiogenic agent, TNP-470. Br J Cancer 1997, 75:512–515.PubMedGoogle Scholar
  74. 74.
    Singh Y, Shikata N, Kiyozuka Y, et al.: Inhibition of tumor growth and metastasis by angiogenesis inhibitor TNP-470 on breast cancer cell lines in vitro and in vivo. Breast Cancer Res Treat 1997, 45:15–27.PubMedCrossRefGoogle Scholar
  75. 75.
    Herbst RS, Takeuchi H, Teicher BA: Paclitaxel/carboplatin administration along with antiangiogenic therapy in nonsmall-cell lung and breast carcinoma models. Cancer Chemother Pharmacol 1998, 41:497–504.PubMedCrossRefGoogle Scholar
  76. 76.
    Kakeji Y, Teicher BA: Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 1997, 15:39–48.PubMedCrossRefGoogle Scholar
  77. 77.
    Teicher BA, Holden SA, Ara G, et al.: Comparison of several antiangiogenic regimens alone and with cytotoxic therapies in the Lewis lung carcinoma. Cancer Chemother Pharmacol 1996, 38:169–177.PubMedCrossRefGoogle Scholar
  78. 78.
    Kudelka AP, Levy T, Verschraegen CF, et al.: A phase I study of TNP-470 administered to patients with advanced squamous cell cancer of the cervix. Clin Cancer Res 1997, 3:1501–1505.PubMedGoogle Scholar
  79. 79.
    Tran HT, Blumenschein GL, Madden T, et al.: Phase I study of the angiogenesis inhibitor TNP-470 in combination with paclitaxel (P) and carboplatin (Cpt) in patients with solid tumors [abstract]. Proc ASCO 2001, 20:394.Google Scholar
  80. 80.
    Hales BF: Thalidomide on the comeback trail. Nat Med 1999, 5:489–490.PubMedCrossRefGoogle Scholar
  81. 81.
    Calabrese L, Fleischer AB: Thalidomide: current and potential clinical applications. Am J Med 2000, 108:487–495.PubMedCrossRefGoogle Scholar
  82. 82.
    D’Amato RJ, Loughnan MS, Flynn E, et al.: Thalidomide is an inhibitor of angiogenesis [abstract]. Proc Natl Acad Sci U S A 1994, 91:4082–4085.PubMedCrossRefGoogle Scholar
  83. 83.
    Singhal S, Mehta J, Desikan R, et al.: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999, 341:1565–1571.PubMedCrossRefGoogle Scholar
  84. 84.
    Tseng JE, Glisson BS, Khuri FR, et al.: Phase II study of the antiangiogenesis agent thalidomide in recurrent or metastatic squamous cell carcinoma of the head and neck. Cancer 2002, in press.Google Scholar
  85. 85.
    Shattuck-Brandt RL, Varilek GW, Radhika A, et al.: Cyclooxygenase-2 expression is increased in the stroma of colon carcinomas from IL-10(-/-) mice. Gastroenterology 2000, 18:337–345.CrossRefGoogle Scholar
  86. 86.
    Schreinemachers DM, Everson RB: Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 1994, 5:138–146.PubMedCrossRefGoogle Scholar
  87. 87.
    Chan G, Boyle JO, Yang EK, et al.: Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 1999, 59:991–994.PubMedGoogle Scholar
  88. 88.
    Khuri FR, Wu H, Lee JJ, et al.: Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res 2001, 4:861–867.Google Scholar
  89. 89.
    Hida T, Yatabe Y, Achiwa H, et al.: Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically adenocarcinomas. Cancer Res 1998, 58:3761–3764.PubMedGoogle Scholar
  90. 90.
    Tsujii M, Kawano S, Tsujii S, et al.: Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998, 93:705–716.PubMedCrossRefGoogle Scholar
  91. 91.
    Tsujii M, Dubois RN: Alterations in cellular adhesion and apoptosis in epitherlial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995, 83:493–501.PubMedCrossRefGoogle Scholar
  92. 92.
    Sheng H, Shao J, Morrow JD, et al.: Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 1998, 58:362–366.PubMedGoogle Scholar
  93. 93.
    Giatromanolaki A, Koukourakis M, O’Byrne K, et al.: Prognostic value of angiogenesis in operable non-small cell lung cancer. J Pathol 1996, 179:80–88.PubMedCrossRefGoogle Scholar
  94. 94.
    Macchiarini P, Fontanini G, Hardin MJ, et al.: Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet 1992, 340:145–146.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc. 2002

Authors and Affiliations

  • Edward S. Kim
    • 1
  • Roy S. Herbst
    • 1
  1. 1.Department of Thoracic/Head and Neck Medical OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations