Current Neurology and Neuroscience Reports

, Volume 6, Issue 5, pp 379–386 | Cite as

Olfactory dysfunction as a predictor of neurodegenerative disease

  • Mark W. Albers
  • Matthias H. Tabert
  • D. P. Devanand
Article

Abstract

Olfactory dysfunction is present in patients diagnosed with Alzheimer’s disease or idiopathic Parkinson’s disease and can differentiate each of these disorders from related disorders with similar clinical presentations. The pathologic hallmarks of each disease are present in brain regions involved in processing olfactory input. Both the olfactory functional deficits and the corroborating pathologic lesions are present in asymptomatic subjects with increased risk of developing these diseases. Preclinical detection of neurodegenerative diseases is necessary to control their devastating effects on individuals and societies. We address whether olfactory dysfunction can be used to assess risk for developing Alzheimer’s disease or Parkinson’s disease in asymptomatic individuals. We argue that further characterization and a deeper understanding of olfactory deficits in these neurodegenerative diseases at the molecular, cellular, and systems levels will augment our acumen for preclinical detection and elucidate pathogenic mechanisms to guide the development of new therapeutic modalities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Postuma RB, Lang AE, Massicotte-Marquez J, et al.: Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder. Neurology 2006, 66:845–851.PubMedCrossRefGoogle Scholar
  2. 2.
    Doty RL: Odor perception in neurodegenerative diseases. In Handbook of Olfaction and Gustation, edn 2. Edited by Doty RL. New York: Marcel Dekker; 2003:479–502.Google Scholar
  3. 3.
    Axel R: Scents and sensibility: a molecular logic of olfactory perception (Nobel lecture). Angew Chem Int Ed Engl 2005, 44:6110–6127. This Nobel lecture is a superb overview of the molecular and functional anatomic principles governing the olfactory system.PubMedCrossRefGoogle Scholar
  4. 4.
    Haberly LB: Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem Senses 2001, 26:551–576.PubMedCrossRefGoogle Scholar
  5. 5.
    Brunjes PC, Illig KR, Meyer EA: A field guide to the anterior olfactory nucleus (cortex). Brain Res Brain Res Rev 2005, 50:305–335.PubMedGoogle Scholar
  6. 6.
    Zelano C, Sobel N: Humans as an animal model for systems-level organization of olfaction. Neuron 2005, 48:431–454.PubMedCrossRefGoogle Scholar
  7. 7.
    Eibenstein A, Fioretti AB, Lena C, et al.: Modern psychophysical tests to assess olfactory function. Neurol Sci 2005, 26:147–155.PubMedCrossRefGoogle Scholar
  8. 8.
    Meisami E, Mikhail L, Baim D, et al.: Human olfactory bulb: aging of glomeruli and mitral cells and a search for the accessory olfactory bulb. Ann N Y Acad Sci 1998, 855:708–715.PubMedCrossRefGoogle Scholar
  9. 9.
    Smutzer GS, Doty RL, Arnold SE, et al.: Olfactory system neuropathology in alzheimer’s disease, parkinson’s disease and schizophrenia. In Handbook of Olfaction and Gustation, edn 2. Edited by Doty RL. New York: Marcel Dekker; 2003:503–523.Google Scholar
  10. 10.
    Doty RL: Aging and Age-related Neurologic Disease: Olfaction. Amsterdam: Elsevier; 1990.Google Scholar
  11. 11.
    Kovacs T: Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 2004, 3:215–232.PubMedCrossRefGoogle Scholar
  12. 12.
    Kovacs T, Cairns NJ, Lantos PL: Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. Neuroreport 2001, 12:285–288.PubMedCrossRefGoogle Scholar
  13. 13.
    Lewy FH: Paralysis agitans: I. Pathologische anatomie. In Handbuch der Neurologie III. Berlin: Springer; 1912:920–933.Google Scholar
  14. 14.
    Duda JE, Shah U, Arnold SE, et al.: The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp Neurol 1999, 160:515–522.PubMedCrossRefGoogle Scholar
  15. 15.
    Braak H, Del Tredici K, Rub U, et al.: Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003, 24:197–211.PubMedCrossRefGoogle Scholar
  16. 16.
    McKeith IG, Dickson DW, Lowe J, et al.: Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005, 65:1863–1872.PubMedCrossRefGoogle Scholar
  17. 17.
    Waldton S: Clinical observations of impaired cranial nerve function in senile dementia. Acta Psychiatry Scand 1974, 50:539–547.CrossRefGoogle Scholar
  18. 18.
    Ansari KA, Johnson A: Olfactory function in patients with Parkinson’s disease. J Chronic Dis 1975, 28:493–497.PubMedCrossRefGoogle Scholar
  19. 19.
    Muller A, Mungersdorf M, Reichmann H, et al.: Olfactory function in Parkinsonian syndromes. J Clin Neurosci 2002, 9:521–524.PubMedCrossRefGoogle Scholar
  20. 20.
    Katzenschlager R, Zijlmans J, Evans A, et al.: Olfactory function distinguishes vascular parkinsonism from Parkinson’s disease. J Neurol Neurosurg Psychiatry 2004, 75:1749–1752.PubMedCrossRefGoogle Scholar
  21. 21.
    McShane RH, Nagy Z, Esiri MM, et al.: Anosmia in dementia is associated with Lewy bodies rather than Alzheimer’s pathology. J Neurol Neurosurg Psychiatry 2001, 70:739–743.PubMedCrossRefGoogle Scholar
  22. 22.
    Westervelt HJ, Stern RA, Tremont G: Odor identification deficits in diffuse lewy body disease. Cogn Behav Neurol 2003, 16:93–99.PubMedCrossRefGoogle Scholar
  23. 23.
    Olichney JM, Murphy C, Hofstetter CR, et al.: Anosmia is very common in the Lewy body variant of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2005, 76:1342–1347.PubMedCrossRefGoogle Scholar
  24. 24.
    Kepecs A, Uchida N, Mainen ZF: The sniff as a unit of olfactory processing. Chem Senses 2006, 31:167–179.PubMedCrossRefGoogle Scholar
  25. 25.
    Mainland J, Sobel N: The sniff is part of the olfactory percept. Chem Senses 2006, 31:181–196.PubMedCrossRefGoogle Scholar
  26. 26.
    Sobel N, Thomason ME, Stappen I, et al.: An impairment in sniffing contributes to the olfactory impairment in Parkinson’s disease. Proc Natl Acad Sci U S A 2001, 98:4154–4159.PubMedCrossRefGoogle Scholar
  27. 27.
    Chong MS, Sahadevan S: Preclinical Alzheimer’s disease: diagnosis and prediction of progression. Lancet Neurol 2005, 4:576–579.PubMedCrossRefGoogle Scholar
  28. 28.
    Mayeux R: Epidemiology of neurodegeneration. Annu Rev Neurosci 2003, 26:81–104.PubMedCrossRefGoogle Scholar
  29. 29.
    Serby M, Mohan C, Aryan M, et al.: Olfactory identification deficits in relatives of Alzheimer’s disease patients. Biol Psychiatry 1996, 39:375–377.PubMedCrossRefGoogle Scholar
  30. 30.
    Nordin S, Murphy C, Davidson TM, et al.: Prevalence and assessment of qualitative olfactory dysfunction in different age groups. Laryngoscope 1996, 106:739–744.PubMedCrossRefGoogle Scholar
  31. 31.
    Mortimer JA, Fortier I, Peoin EP, Gauvreau D: Sensory loss as a predictor of dementia and questionable dementia in a community study of elderly persons. Neurobiol Aging 1996, 17:S79.CrossRefGoogle Scholar
  32. 32.
    Bacon AW, Bondi MW, Salmon DP, et al.: Very early changes in olfactory functioning due to Alzheimer’s disease and the role of apolipoprotein E in olfaction. Ann N Y Acad Sci 1998, 855:723–731.PubMedCrossRefGoogle Scholar
  33. 33.
    Devanand DP, Michaels-Marston KS, Liu X, et al.: Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 2000, 157:1399–1405.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang QS, Tian L, Huang YL, et al.: Olfactory identification and apolipoprotein E epsilon 4 allele in mild cognitive impairment. Brain Res 2002, 951:77–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Petersen RC: Mild cognitive impairment as a diagnostic entity. J Intern Med 2004, 256:183–194.PubMedCrossRefGoogle Scholar
  36. 36.
    Schiffman SS, Graham BG, Sattely-Miller EA, et al.: Taste, smell and neuropsychological performance of individuals at familial risk for Alzheimer’s disease. Neurobiol Aging 2002, 23:397–404.PubMedCrossRefGoogle Scholar
  37. 37.
    Eibenstein A, Fioretti AB, Simaskou MN, et al.: Olfactory screening test in mild cognitive impairment. Neurol Sci 2005, 26:156–160.PubMedCrossRefGoogle Scholar
  38. 38.
    Wolfensberger M, Schnieper N, Welge-Lussen A: Sniffin’ Sticks: a new olfactory test batter. Acta Otolaryngol 2000, 120:303–306.PubMedCrossRefGoogle Scholar
  39. 39.
    Graves AB, Bowen JD, Rajaram L, et al.: Impaired olfaction as a marker for cognitive decline: interaction with apolipoprotein E epsilon4 status. Neurology 1999, 53:1480–1487.PubMedGoogle Scholar
  40. 40.
    Tabert MH, Liu X, Doty RL, et al.: A 10-item smell identification scale related to risk for Alzheimer’s disease. Ann Neurol 2005, 58:155–160. This article identifies a 10-odor subset of the UPSIT that confers enhanced specificity and sensitivity for detection of risk of converting to AD. The 10 items were identified by two independent statistical measures. Retabulating the data from previous studies that used the UPSIT with this 10-item subset may yield more robust results.PubMedCrossRefGoogle Scholar
  41. 41.
    Royall DR, Chiodo LK, Polk MS, et al.: Severe dysosmia is specifically associated with Alzheimer-like memory deficits in nondemented elderly retirees. Neuroepidemiology 2002, 21:68–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Feldman JI, Murphy C, Davidson TM, et al.: The rhinologic evaluation of Alzheimer’s disease. Laryngoscope 1991, 101:1198–1202.PubMedCrossRefGoogle Scholar
  43. 43.
    Peters JM, Hummel T, Kratzsch T, et al.: Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am J Psychiatry 2003, 160:1995–2002.PubMedCrossRefGoogle Scholar
  44. 44.
    Murphy C, Jernigan TL, Fennema-Notestine C: Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. J Int Neuropsychol Soc 2003, 9:459–471.PubMedCrossRefGoogle Scholar
  45. 45.
    Cerf-Ducastel B, Murphy C: FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects. Brain Res 2003, 986:39–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Buchsbaum MS, Kesslak JP, Lynch G, et al.: Temporal and hippocampal metabolic rate during an olfactory memory task assessed by positron emission tomography in patients with dementia of the Alzheimer type and controls. Preliminary studies. Arch Gen Psychiatry 1991, 48:840–847.PubMedGoogle Scholar
  47. 47.
    Kareken DA, Doty RL, Moberg PJ, et al.: Olfactory-evoked regional cerebral blood flow in Alzheimer’s disease. Neuropsychology 2001, 15:18–29.PubMedCrossRefGoogle Scholar
  48. 48.
    Murphy C, Cerf-Ducastel B, Calhoun-Haney R, et al.: ERP, fMRI and functional connectivity studies of brain response to odor in normal aging and Alzheimer’s disease. Chem Senses 2005, 30(Suppl 1):i170–171.PubMedCrossRefGoogle Scholar
  49. 49.
    Stiasny-Kolster K, Doerr Y, Moller JC, et al.: Combination of "idiopathic" REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 2005, 128(Pt:1):126–137. This work demonstrated that patients with REM sleep disorder had lower odor thresholds, odor discrimination, and odor identification as well as reduced dopamine transporter PET signal, all of which are consistent with a higher probability of developing iPD.PubMedCrossRefGoogle Scholar
  50. 50.
    Berendse HW, Booij J, Francot CM, et al.: Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol 2001, 50:34–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Kovacs T, Cairns NJ, Lantos PL: Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 1999, 25:481–491.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  • Mark W. Albers
    • 1
  • Matthias H. Tabert
  • D. P. Devanand
  1. 1.Department of NeurologyColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations