Skip to main content

Advertisement

Log in

The Essentials of Molecular Testing in CNS Tumors: What to Order and How to Integrate Results

  • Neuro-Oncology (P. Wen, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Molecular testing has become essential for the optimal workup of central nervous system (CNS) tumors. There is a vast array of testing from which to choose, and it can sometimes be challenging to appropriately incorporate findings into an integrated report. This article reviews various molecular tests and provides a concise overview of the most important molecular findings in the most commonly encountered CNS tumors.

Recent Findings

Many molecular alterations in CNS tumors have been identified over recent years, some of which are incorporated into the 2016 World Health Organization (WHO) classification and the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) updates. Array-based methylation profiling has emerged over the past couple of years and will likely replace much of currently used ancillary testing for diagnostic purposes.

Summary

A combination of next-generation sequencing (NGS) panel and copy number array is ideal for diffuse gliomas and embryonal tumors, with a low threshold to employ in other tumor types. With the recent advances in molecular diagnostics, it will be ever more important for the pathologist to recognize the molecular testing available, which tests to perform, and to appropriately integrate results in light of clinical, radiologic, and histologic findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Horbinski C, Ligon KL, Brastianos P, Huse JT, Venere M, Chang S, et al. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro Oncol. 2019;21(12):1498–508. https://doi.org/10.1093/neuonc/noz119A consensus statement on molecular testing in CNS tumors.

    Article  PubMed  PubMed Central  Google Scholar 

  2. • Perry A, Brat DJ. Practical surgical neuropathology: a diagnostic approach. second ed. Philadelphia: Elsevier; 2018. One of the most current and comprehensive reference texts for surgical neuropathology

    Google Scholar 

  3. Solomon DA. Integrating molecular diagnostics with surgical neuropathology. In: Perry A, Brat DJ, editors. Practical surgical neuropathology: a diagnostic approach. second ed. Philadelphia: Elsevier; 2018.

    Google Scholar 

  4. Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol. 2013;125(5):621–36. https://doi.org/10.1007/s00401-013-1106-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7. https://doi.org/10.1073/pnas.74.12.5463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242(1):84–9. https://doi.org/10.1006/abio.1996.0432.

    Article  CAS  PubMed  Google Scholar 

  7. Olmedillas-Lopez S, Garcia-Arranz M, Garcia-Olmo D. Current and emerging applications of droplet digital PCR in oncology. Mol Diagn Ther. 2017;21(5):493–510. https://doi.org/10.1007/s40291-017-0278-8.

    Article  CAS  PubMed  Google Scholar 

  8. Corless BC, Chang GA, Cooper S, Syeda MM, Shao Y, Osman I, et al. Development of novel mutation-specific droplet digital PCR assays detecting TERT promoter mutations in tumor and plasma samples. J Mol Diagn. 2019;21(2):274–85. https://doi.org/10.1016/j.jmoldx.2018.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chi AS, Batchelor TT, Dias-Santagata D, Borger D, Stiles CD, Wang DL, et al. Prospective, high-throughput molecular profiling of human gliomas. J Neuro-Oncol. 2012;110(1):89–98. https://doi.org/10.1007/s11060-012-0938-9.

    Article  CAS  Google Scholar 

  10. Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58(4):586–97. https://doi.org/10.1016/j.molcel.2015.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.1038/nrg2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nikiforova MN, Wald AI, Melan MA, Roy S, Zhong S, Hamilton RL, et al. Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro-Oncology. 2016;18(3):379–87. https://doi.org/10.1093/neuonc/nov289.

    Article  CAS  PubMed  Google Scholar 

  13. Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-Oncology. 2017;19(8):1047–57. https://doi.org/10.1093/neuonc/nox026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kline CN, Joseph NM, Grenert JP, van Ziffle J, Talevich E, Onodera C, et al. Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncology. 2017;19(5):699–709. https://doi.org/10.1093/neuonc/now254.

    Article  CAS  PubMed  Google Scholar 

  15. Clark KH, Villano JL, Nikiforova MN, Hamilton RL, Horbinski C. 1p/19q testing has no significance in the workup of glioblastomas. Neuropathol Appl Neurobiol. 2013;39(6):706–17. https://doi.org/10.1111/nan.12031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross JS, Wang K, Chmielecki J, Gay L, Johnson A, Chudnovsky J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138(4):881–90. https://doi.org/10.1002/ijc.29825.

    Article  CAS  PubMed  Google Scholar 

  17. •• Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO classification of tumours the central nervous system (revised 4th edition). Lyon: IARC; 2016. The 2016 WHO book on CNS tumors remains the gold standard for diagnosis, and is the first edition to specifically include molecular data as part of the diagnostic criteria for certain tumors.

  18. •• Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136(5):805–10. https://doi.org/10.1007/s00401-018-1913-0Established consensus guidelines for diagnosis of diffuse astrocytic glioma,IDH-wildtype, with molecular features of glioblastoma, WHO grade 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. https://doi.org/10.1056/NEJMoa043331.

    Article  CAS  PubMed  Google Scholar 

  20. Quillien V, Lavenu A, Karayan-Tapon L, Carpentier C, Labussiere M, Lesimple T, et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer. 2012;118(17):4201–11. https://doi.org/10.1002/cncr.27392.

    Article  CAS  PubMed  Google Scholar 

  21. Hegi ME, Genbrugge E, Gorlia T, Stupp R, Gilbert MR, Chinot OL, et al. MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: a pooled analysis of four clinical trials. Clin Cancer Res. 2019;25(6):1809–16. https://doi.org/10.1158/1078-0432.CCR-18-3181.

    Article  PubMed  Google Scholar 

  22. •• Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74. https://doi.org/10.1038/nature26000Landmark study showing the ability of genomic array-based methylation profiling to classify CNS tumors, including those that are difficult to classify based on light microscopy alone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orozco JIJ, Knijnenburg TA, Manughian-Peter AO, Salomon MP, Barkhoudarian G, Jalas JR, et al. Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun. 2018;9(1):4627. https://doi.org/10.1038/s41467-018-06715-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaunmuktane Z, Capper D, Jones DTW, Schrimpf D, Sill M, Dutt M, et al. Methylation array profiling of adult brain tumours: diagnostic outcomes in a large, single centre. Acta Neuropathol Commun. 2019;7(1):24. https://doi.org/10.1186/s40478-019-0668-8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bady P, Sciuscio D, Diserens AC, Bloch J, van den Bent MJ, Marosi C, et al. MGMT methylation analysis of glioblastoma on the Infinium methylation beadchip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 2012;124(4):547–60. https://doi.org/10.1007/s00401-012-1016-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwalbe EC, Williamson D, Lindsey JC, Hamilton D, Ryan SL, Megahed H, et al. DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathol. 2013;125(3):359–71. https://doi.org/10.1007/s00401-012-1077-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43. https://doi.org/10.1016/j.ccell.2015.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. •• Sahm F, Schrimpf D, Stichel D, Jones DTW, Hielscher T, Schefzyk S, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017;18(5):682–94. https://doi.org/10.1016/S1470-2045(17)30155-9Demonstrated that the pattern of genomic methylation is a better indicator of clinical behavior in meningiomas than traditional WHO grading by light microscopy.

    Article  CAS  PubMed  Google Scholar 

  29. • Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell, 2016;164(5):1060–72. https://doi.org/10.1016/j.cell.2016.01.015Methylation profiling of institutionally diagnosed CNS-PNETs reclassifies the majority as well-defined CNS tumor entities. Four new tumor entities emerge from the remaining fraction.

  30. • Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018;136(2):273–91. https://doi.org/10.1007/s00401-018-1837-8One of the newer CNS tumor entities that has emerged from methylation profiling, characterized by a unique combination of molecular alterations.

    Article  CAS  PubMed  Google Scholar 

  31. • Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. 2017;19(suppl_5):v1–v88. https://doi.org/10.1093/neuonc/nox158This is the main reference for essential epidemiologic data on CNS tumors.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53. https://doi.org/10.2353/ajpath.2007.070011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):829–48. https://doi.org/10.1007/s00401-015-1432-1.

    Article  CAS  PubMed  Google Scholar 

  34. Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev. 2019;80:101896. https://doi.org/10.1016/j.ctrv.2019.101896.

    Article  CAS  PubMed  Google Scholar 

  35. Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, et al. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro-Oncology. 2019;21(1):106–14. https://doi.org/10.1093/neuonc/noy091.

    Article  CAS  PubMed  Google Scholar 

  36. Di Stefano AL, Fucci A, Frattini V, Labussiere M, Mokhtari K, Zoppoli P, et al. Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin Cancer Res. 2015;21(14):3307–17. https://doi.org/10.1158/1078-0432.CCR-14-2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Korshunov A, Chavez L, Sharma T, Ryzhova M, Schrimpf D, Stichel D, et al. Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathol. 2018;28(5):656–62. https://doi.org/10.1111/bpa.12566.

    Article  CAS  PubMed  Google Scholar 

  38. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73. https://doi.org/10.1056/NEJMoa0808710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van den Bent MJ, Baumert B, Erridge SC, Vogelbaum MA, Nowak AK, Sanson M, et al. Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet. 2017;390(10103):1645–53. https://doi.org/10.1016/S0140-6736(17)31442-3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98. https://doi.org/10.1056/NEJMoa1402121.

    Article  CAS  PubMed  Google Scholar 

  41. • Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020. https://doi.org/10.1007/s00401-020-02127-9IDH-mutant astrocytomas with homozygousCDKN2A/Bloss should be classified as WHO grade 4 tumors regardless of histologic features.

  42. Reinhardt A, Stichel D, Schrimpf D, Koelsche C, Wefers AK, Ebrahimi A, et al. Tumors diagnosed as cerebellar glioblastoma comprise distinct molecular entities. Acta Neuropathol Commun. 2019;7(1):163. https://doi.org/10.1186/s40478-019-0801-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37. https://doi.org/10.1016/j.ccr.2012.08.024.

    Article  CAS  PubMed  Google Scholar 

  44. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130(6):815–27. https://doi.org/10.1007/s00401-015-1478-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma. IDH-mutant Acta Neuropathol. 2018;135(4):639–42. https://doi.org/10.1007/s00401-018-1826-y.

    Article  PubMed  Google Scholar 

  46. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46(5):444–50. https://doi.org/10.1038/ng.2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V, et al. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol. 2016;131(1):137–46. https://doi.org/10.1007/s00401-015-1493-1.

    Article  CAS  PubMed  Google Scholar 

  48. Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD, et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 2016;131(6):833–45. https://doi.org/10.1007/s00401-016-1539-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ellison DW, Hawkins C, Jones DTW, Onar-Thomas A, Pfister SM, Reifenberger G, et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation. Acta Neuropathol. 2019;137(4):683–7. https://doi.org/10.1007/s00401-019-01987-0.

    Article  CAS  PubMed  Google Scholar 

  50. Sahm F, Reuss D, Koelsche C, Capper D, Schittenhelm J, Heim S, et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol. 2014;128(4):551–9. https://doi.org/10.1007/s00401-014-1326-7.

    Article  CAS  PubMed  Google Scholar 

  51. Halani SH, Yousefi S, Velazquez Vega J, Rossi MR, Zhao Z, Amrollahi F, et al. Multi-faceted computational assessment of risk and progression in oligodendroglioma implicates NOTCH and PI3K pathways. NPJ Precis Oncol. 2018;2:24. https://doi.org/10.1038/s41698-018-0067-9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen H, Thomas C, Munoz FA, Alexandrescu S, Horbinski CM, Olar A, et al. Polysomy is associated with poor outcome in 1p19q co-deleted oligodendroglial tumors. Neuro-Oncology. 2019;21:1164–74. https://doi.org/10.1093/neuonc/noz098.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol. 2010;119(5):641–9. https://doi.org/10.1007/s00401-009-0634-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Horbinski C. To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol. 2013;72(1):2–7. https://doi.org/10.1097/NEN.0b013e318279f3db.

    Article  PubMed  Google Scholar 

  55. Collins VP, Jones DT, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):775–88. https://doi.org/10.1007/s00401-015-1410-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405. https://doi.org/10.1007/s00401-011-0802-6.

    Article  CAS  PubMed  Google Scholar 

  57. Vaubel RA, Caron AA, Yamada S, Decker PA, Eckel Passow JE, Rodriguez FJ, et al. Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol. 2018;28(2):172–82. https://doi.org/10.1111/bpa.12495.

    Article  CAS  PubMed  Google Scholar 

  58. Capper D, Stichel D, Sahm F, Jones DTW, Schrimpf D, Sill M, et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 2018;136(2):181–210. https://doi.org/10.1007/s00401-018-1879-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rivera B, Gayden T, Carrot-Zhang J, Nadaf J, Boshari T, Faury D, et al. Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathol. 2016;131(6):847–63. https://doi.org/10.1007/s00401-016-1549-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kakkar A, Majumdar A, Kumar A, Tripathi M, Pathak P, Sharma MC, et al. Alterations in BRAF gene, and enhanced MTOR and MAPK signaling in dysembryoplastic neuroepithelial tumors (DNTs). Epilepsy Res. 2016;127:141–51. https://doi.org/10.1016/j.eplepsyres.2016.08.028.

    Article  CAS  PubMed  Google Scholar 

  61. Chappé C, Padovan L, Scavarda D, Forest F, Nanni-Metellus I, Loundou A, et al. Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAF(V600E) mutation and expression. Brain Pathol. 2013;23(5):574–83. https://doi.org/10.1111/bpa.12048.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sievers P, Appay R, Schrimpf D, Stichel D, Reuss D, Wefers AK, et al. Rosette-forming glioneuronal tumors share a distinct DNA methylation profile and mutations in FGFR1, with recurrent co-mutation of PIK3CA and NF1. Acta Neuropathol. 2019;138(3):497–504. https://doi.org/10.1007/s00401-019-02038-4.

    Article  CAS  PubMed  Google Scholar 

  63. Pages M, Lacroix L, Tauziede-Espariat A, Castel D, Daudigeos-Dubus E, Ridola V, et al. Papillary glioneuronal tumors: histological and molecular characteristics and diagnostic value of SLC44A1-PRKCA fusion. Acta Neuropathol Commun. 2015;3:85. https://doi.org/10.1186/s40478-015-0264-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature. 2014;506(7489):451–5. https://doi.org/10.1038/nature13109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, Dunham C, et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-a childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 2017;134(5):705–14. https://doi.org/10.1007/s00401-017-1752-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84. https://doi.org/10.1007/s00401-012-0958-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72. https://doi.org/10.1007/s00401-011-0922-z.

    Article  CAS  PubMed  Google Scholar 

  68. Kumar R, Liu APY, Northcott PA. Medulloblastoma genomics in the modern molecular era. Brain Pathol. 2019;30:679. https://doi.org/10.1111/bpa.12804.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23):2927–35. https://doi.org/10.1200/JCO.2012.48.5052.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fruhwald MC, Biegel JA, Bourdeaut F, Roberts CW, Chi SN. Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro-Oncology. 2016;18(6):764–78. https://doi.org/10.1093/neuonc/nov264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hasselblatt M, Nagel I, Oyen F, Bartelheim K, Russell RB, Schuller U, et al. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol. 2014;128(3):453–6. https://doi.org/10.1007/s00401-014-1323-x.

    Article  PubMed  Google Scholar 

  72. Judkins AR. Immunohistochemistry of INI1 expression: a new tool for old challenges in CNS and soft tissue pathology. Adv Anat Pathol. 2007;14(5):335–9. https://doi.org/10.1097/PAP.0b013e3180ca8b08.

    Article  CAS  PubMed  Google Scholar 

  73. Korshunov A, Sturm D, Ryzhova M, Hovestadt V, Gessi M, Jones DT, et al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol. 2014;128(2):279–89. https://doi.org/10.1007/s00401-013-1228-0.

    Article  PubMed  Google Scholar 

  74. Sahm F, Toprak UH, Hubschmann D, Kleinheinz K, Buchhalter I, Sill M, et al. Meningiomas induced by low-dose radiation carry structural variants of NF2 and a distinct mutational signature. Acta Neuropathol. 2017;134(1):155–8. https://doi.org/10.1007/s00401-017-1715-9.

    Article  CAS  PubMed  Google Scholar 

  75. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9. https://doi.org/10.1038/ng.2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro-Oncology. 2016;18(5):649–55. https://doi.org/10.1093/neuonc/nov316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80. https://doi.org/10.1126/science.1233009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reuss DE, Piro RM, Jones DT, Simon M, Ketter R, Kool M, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013;125(3):351–8. https://doi.org/10.1007/s00401-013-1093-x.

    Article  CAS  PubMed  Google Scholar 

  79. Smith MJ, Ahn S, Lee JI, Bulman M, Plessis DD, Suh YL. SMARCE1 mutation screening in classification of clear cell meningiomas. Histopathology. 2017;70(5):814–20. https://doi.org/10.1111/his.13135.

    Article  PubMed  Google Scholar 

  80. Shankar GM, Abedalthagafi M, Vaubel RA, Merrill PH, Nayyar N, Gill CM, et al. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology. 2017;19(4):535–45. https://doi.org/10.1093/neuonc/now235.

    Article  CAS  PubMed  Google Scholar 

  81. Sahm F, Schrimpf D, Olar A, Koelsche C, Reuss D, Bissel J, et al. TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst. 2016;108(5). https://doi.org/10.1093/jnci/djv377.

  82. Juratli TA, McCabe D, Nayyar N, Williams EA, Silverman IM, Tummala SS, et al. DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathol. 2018;136(5):779–92. https://doi.org/10.1007/s00401-018-1899-7.

    Article  CAS  PubMed  Google Scholar 

  83. Perry A, Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW. A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol. 2002;12(2):183–90. https://doi.org/10.1111/j.1750-3639.2002.tb00433.x.

    Article  CAS  PubMed  Google Scholar 

  84. Zang KD. Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet Cell Genet. 2001;93(3–4):207–20. https://doi.org/10.1159/000056986.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig M. Horbinski.

Ethics declarations

Conflict of Interest

Alexander Z. Feldman, Lawrence J. Jennings, Nitin R. Wadhwani, Daniel J. Brat, and Craig M. Horbinski declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, A.Z., Jennings, L.J., Wadhwani, N.R. et al. The Essentials of Molecular Testing in CNS Tumors: What to Order and How to Integrate Results. Curr Neurol Neurosci Rep 20, 23 (2020). https://doi.org/10.1007/s11910-020-01041-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01041-7

Keywords

Navigation