Advertisement

Clinical Characteristics and Treatment of MOG-IgG–Associated Optic Neuritis

  • Deena A. Tajfirouz
  • M. Tariq Bhatti
  • John J. ChenEmail author
Neuro-Ophthalmology (R. Mallery, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-Ophthalmology

Abstract

Purpose of Review

Antibodies against myelin oligodendrocyte glycoprotein (MOG) are associated with a unique acquired central nervous system demyelinating disease—termed MOG-IgG-associated disorder (MOGAD)—which has a variety of clinical manifestations, including optic neuritis, transverse myelitis, acute disseminating encephalomyelitis, and brainstem encephalitis. In this review, we summarize the current knowledge of the clinical characteristics, neuroimaging, treatments, and outcomes of MOGAD, with a focus on optic neuritis.

Recent Findings

The recent development of a reproducible, live cell–based assay for MOG-IgG, has improved our ability to identify and study this disease. Based on contemporary studies, it has become increasingly evident that MOGAD is distinct from multiple sclerosis and aquaporin-4-positive neuromyelitis optica spectrum disorder with different clinical features and treatment outcomes.

Summary

There is now sufficient evidence to separate MOGAD from other inflammatory central nervous system demyelinating disorders, which will allow focused research on understanding the pathophysiology of the disease. Prospective treatment trials are needed to determine the best course of treatment, and until then, treatment plans must be individualized to the clinical manifestations and severity of disease.

Keywords

Optic neuritis Myelin oligodendrocyte glycoprotein (MOG) Aquaporin-4 (AQP4) Neuromyelitis optica spectrum disorder (NMOSD) Acute disseminating encephalomyelitis (ADEM) Multiple sclerosis 

Abbreviations

AQP4

aquaporin-4

IgG

immunoglobulin G

MOG

myelin oligodendrocyte glycoprotein

MRI

magnetic resonance imaging

NMOSD

neuromyelitis optica spectrum disorder

ON

optic neuritis

Notes

Compliance with Ethical Standards

Conflict of Interest

Deena A. Tajfirouz, M. Tariq Bhatti, and John J. Chen each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schluesener HJ, Sobel RA, Linington C, Weiner HL. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol. 1987;139(12):4016–21.PubMedGoogle Scholar
  2. 2.
    Steinman L, Zamvil SS. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol. 2006;60(1):12–21.  https://doi.org/10.1002/ana.20913.CrossRefPubMedGoogle Scholar
  3. 3.
    Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2003;349(2):139–45.  https://doi.org/10.1056/NEJMoa022328.CrossRefPubMedGoogle Scholar
  4. 4.
    • Jarius S, Paul F, Aktas O, Asgari N, Dale RC, de Seze J, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflamm. 2018;15(1):134.  https://doi.org/10.1186/s12974-018-1144-2 This article provides recommendations regarding diagnosis and antibody testing based on the literature available as of 2018. CrossRefGoogle Scholar
  5. 5.
    Weber MS, Derfuss T, Metz I, Bruck W. Defining distinct features of anti-MOG antibody associated central nervous system demyelination. Ther Adv Neurol Disord. 2018;11:1756286418762083.  https://doi.org/10.1177/1756286418762083.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    •• Jurynczyk M, Messina S, Woodhall MR, Raza N, Everett R, Roca-Fernandez A, et al. Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain. 2017;140(12):3128–38.  https://doi.org/10.1093/brain/awx276 This study discusses the clinical characteristics of MOGAD in a large cohort of patients from the UK, which includes an incidence cohort. CrossRefPubMedGoogle Scholar
  7. 7.
    • Chen JJ, Flanagan EP, Jitprapaikulsan J, Lopez-Chiriboga ASS, Fryer JP, Leavitt JA, et al. Myelin oligodendrocyte glycoprotein antibody-positive optic neuritis: clinical characteristics, radiologic clues, and outcome. Am J Ophthalmol. 2018;195:8–15.  https://doi.org/10.1016/j.ajo.2018.07.020 This study describes the clinical characteristics, radiological findings and outcomes of patients with optic neuritis from MOGAD in a large sample of patients. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen JJ, Fraser CL. Do myelin oligodendrocyte glycoprotein antibodies represent a distinct syndrome? J Neuroophthalmol. 2019.  https://doi.org/10.1097/WNO.0000000000000779.CrossRefGoogle Scholar
  9. 9.
    Sepulveda M, Armangue T, Martinez-Hernandez E, Arrambide G, Sola-Valls N, Sabater L, et al. Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. J Neurol. 2016;263(7):1349–60.  https://doi.org/10.1007/s00415-016-8147-7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    •• Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation. 2016;13(1):280.  https://doi.org/10.1186/s12974-016-0718-0 This was one of the first large multicenter retrospective studies which reported the clinical presentation, radiological findings and long term outcomes of patients with MOGAD. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    • Ramanathan S, Mohammad S, Tantsis E, Nguyen TK, Merheb V, Fung VSC, et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J Neurol Neurosurg Psychiatry. 2018;89(2):127–37.  https://doi.org/10.1136/jnnp-2017-316880 This study reports the clinical course and response to immunotherapy in patients with relapsing MOGAD. CrossRefPubMedGoogle Scholar
  12. 12.
    Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 2014;24(1):83–97.  https://doi.org/10.1111/bpa.12099.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Di Pauli F, Hoftberger R, Reindl M, Beer R, Rhomberg P, Schanda K, et al. Fulminant demyelinating encephalomyelitis: insights from antibody studies and neuropathology. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e175.  https://doi.org/10.1212/NXI.0000000000000175.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Spadaro M, Gerdes LA, Mayer MC, Ertl-Wagner B, Laurent S, Krumbholz M, et al. Histopathology and clinical course of MOG-antibody-associated encephalomyelitis. Ann Clin Transl Neurol. 2015;2(3):295–301.  https://doi.org/10.1002/acn3.164.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jarius S, Metz I, Konig FB, Ruprecht K, Reindl M, Paul F, et al. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in ‘pattern II multiple sclerosis’ and brain biopsy findings in a MOG-IgG-positive case. Mult Scler. 2016;22(12):1541–9.  https://doi.org/10.1177/1352458515622986.CrossRefPubMedGoogle Scholar
  16. 16.
    de Mol CL, Wong Y, van Pelt ED, Wokke B, Siepman T, Neuteboom RF, et al. The clinical spectrum and incidence of anti-MOG-associated acquired demyelinating syndromes in children and adults. Mult Scler. 2019;1352458519845112.  https://doi.org/10.1177/1352458519845112.
  17. 17.
    Boesen MS, Jensen PEH, Born AP, Magyari M, Nilsson AC, Hoei-Hansen C, et al. Incidence of pediatric neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease in Denmark 20082018: a nationwide, population-based cohort study. Mult Scler Relat Disord. 2019;33:162–7.  https://doi.org/10.1016/j.msard.2019.06.002.CrossRefPubMedGoogle Scholar
  18. 18.
    Etemadifar M, Abbasi M, Salari M, Etemadifar F, Tavakoli H. Comparing myelin oligodendrocyte glycoprotein antibody (MOG-Ab) and non MOG-Ab associated optic neuritis: Clinical course and treatment outcome. Mult Scler Relat Disord. 2019;27:127–30.  https://doi.org/10.1016/j.msard.2018.10.013.CrossRefPubMedGoogle Scholar
  19. 19.
    Ishikawa H, Kezuka T, Shikishima K, Yamagami A, Hiraoka M, Chuman H, et al. Epidemiologic and clinical characteristics of optic neuritis in Japan. Ophthalmology. 2019.  https://doi.org/10.1016/j.ophtha.2019.04.042.CrossRefGoogle Scholar
  20. 20.
    Cobo-Calvo A, Ruiz A, Maillart E, Audoin B, Zephir H, Bourre B, et al. OFSEP and NOMADMUS Study Group. Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults: The MOGADOR study. Neurology. 2018;90(21):e1858–e69.  https://doi.org/10.1212/WNL.0000000000005560.CrossRefPubMedGoogle Scholar
  21. 21.
    Sepulveda M, Armangue T, Sola-Valls N, Arrambide G, Meca-Lallana JE, Oreja-Guevara C, et al. Neuromyelitis optica spectrum disorders: comparison according to the phenotype and serostatus. Neurol Neuroimmunol Neuroinflamm. 2016;3(3):e225.  https://doi.org/10.1212/NXI.0000000000000225.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhao G, Chen Q, Huang Y, Li Z, Sun X, Lu P, et al. Clinical characteristics of myelin oligodendrocyte glycoprotein seropositive optic neuritis: a cohort study in Shanghai, China. J Neurol. 2018;265(1):33–40.  https://doi.org/10.1007/s00415-017-8651-4.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao Y, Tan S, Chan TCY, Xu Q, Zhao J, Teng D, et al. Clinical features of demyelinating optic neuritis with seropositive myelin oligodendrocyte glycoprotein antibody in Chinese patients. Br J Ophthalmol. 2018;102(10):1372–7.  https://doi.org/10.1136/bjophthalmol-2017-311177.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou H, Zhao S, Yin D, Chen X, Xu Q, Chen T, et al. Optic neuritis: a 5-year follow-up study of Chinese patients based on aquaporin-4 antibody status and ages. J Neurol. 2016;263(7):1382–9.  https://doi.org/10.1007/s00415-016-8155-7.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou L, Huang Y, Li H, Fan J, Zhangbao J, Yu H, et al. MOG-antibody associated demyelinating disease of the CNS: a clinical and pathological study in Chinese Han patients. J Neuroimmunol. 2017;305:19–28.  https://doi.org/10.1016/j.jneuroim.2017.01.007.CrossRefPubMedGoogle Scholar
  26. 26.
    Bouzar M, Daoudi S, Hattab S, Bouzar AA, Deiva K, Wildemann B, et al. Neuromyelitis optica spectrum disorders with antibodies to myelin oligodendrocyte glycoprotein or aquaporin-4: Clinical and paraclinical characteristics in Algerian patients. J Neurol Sci. 2017;381:240–4.  https://doi.org/10.1016/j.jns.2017.08.3254.CrossRefPubMedGoogle Scholar
  27. 27.
    Soelberg K, Jarius S, Skejoe H, Engberg H, Mehlsen JJ, Nilsson AC, et al. A population-based prospective study of optic neuritis. Mult Scler. 2017;23(14):1893–901.  https://doi.org/10.1177/1352458517734070.CrossRefPubMedGoogle Scholar
  28. 28.
    Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol. 2019;15(2):89–102.  https://doi.org/10.1038/s41582-018-0112-x.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu H, Zhou H, Wang J, Xu Q, Wei S. Antibodies to myelin oligodendrocyte glycoprotein in chronic relapsing inflammatory optic neuropathy. Br J Ophthalmol. 2018.  https://doi.org/10.1136/bjophthalmol-2018-313142.CrossRefGoogle Scholar
  30. 30.
    Lee HJ, Kim B, Waters P, Woodhall M, Irani S, Ahn S, et al. Chronic relapsing inflammatory optic neuropathy (CRION): a manifestation of myelin oligodendrocyte glycoprotein antibodies. J Neuroinflammation. 2018;15(1):302.  https://doi.org/10.1186/s12974-018-1335-x.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ramanathan S, Prelog K, Barnes EH, Tantsis EM, Reddel SW, Henderson AP, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler. 2016;22(4):470–82.  https://doi.org/10.1177/1352458515593406.CrossRefPubMedGoogle Scholar
  32. 32.
    Akaishi T, Sato DK, Nakashima I, Takeshita T, Takahashi T, Doi H, et al. MRI and retinal abnormalities in isolated optic neuritis with myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies: a comparative study. J Neurol Neurosurg Psychiatry. 2016;87(4):446–8.  https://doi.org/10.1136/jnnp-2014-310206.CrossRefPubMedGoogle Scholar
  33. 33.
    Ramanathan S, Reddel SW, Henderson A, Parratt JD, Barnett M, Gatt PN, et al. Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurol Neuroimmunol Neuroinflamm. 2014;1(4):e40.  https://doi.org/10.1212/NXI.0000000000000040.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu H, Zhou H, Wang J, Sun M, Teng D, Song H, et al. The prevalence and prognostic value of myelin oligodendrocyte glycoprotein antibody in adult optic neuritis. J Neurol Sci. 2019;396:225–31.  https://doi.org/10.1016/j.jns.2018.11.029.CrossRefPubMedGoogle Scholar
  35. 35.
    Jarius S, Franciotta D, Paul F, Ruprecht K, Bergamaschi R, Rommer PS, et al. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. J Neuroinflammation. 2010;7:52.  https://doi.org/10.1186/1742-2094-7-52.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sato DK, Callegaro D, Lana-Peixoto MA, Waters PJ, de Haidar Jorge FM, Takahashi T, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014;82(6):474–81.  https://doi.org/10.1212/WNL.0000000000000101.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kitley J, Waters P, Woodhall M, Leite MI, Murchison A, George J, et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol. 2014;71(3):276–83.  https://doi.org/10.1001/jamaneurol.2013.5857.CrossRefPubMedGoogle Scholar
  38. 38.
    Jurynczyk M, Geraldes R, Probert F, Woodhall MR, Waters P, Tackley G, et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain. 2017;140(3):617–27.  https://doi.org/10.1093/brain/aww350.CrossRefPubMedGoogle Scholar
  39. 39.
    • Dubey D, Pittock SJ, Krecke KN, Morris PP, Sechi E, Zalewski NL, et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol. 2019;76(3):301–9.  https://doi.org/10.1001/jamaneurol.2018.4053 This study reports the clinical, radiological and prognostic features of MOGAD compared with myelitis with aquaporin-4 IgG and multiple sclerosis in a large retrospective study of patients. CrossRefPubMedGoogle Scholar
  40. 40.
    Jarius S, Eichhorn P, Franciotta D, Petereit HF, Akman-Demir G, Wick M, et al. The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J Neurol. 2017;264(3):453–66.  https://doi.org/10.1007/s00415-016-8360-4.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim SM, Woodhall MR, Kim JS, Kim SJ, Park KS, Vincent A, et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e163.  https://doi.org/10.1212/NXI.0000000000000163.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jarius S, Ruprecht K, Stellmann JP, Huss A, Ayzenberg I, Willing A, et al. MOG-IgG in primary and secondary chronic progressive multiple sclerosis: a multicenter study of 200 patients and review of the literature. J Neuroinflammation. 2018;15(1):88.  https://doi.org/10.1186/s12974-018-1108-6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    O'Connor KC, McLaughlin KA, De Jager PL, Chitnis T, Bettelli E, Xu C, et al. Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat Med. 2007;13(2):211–7.  https://doi.org/10.1038/nm1488.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Petzold A, Woodhall M, Khaleeli Z, Tobin WO, Pittock SJ, Weinshenker BG, et al. Aquaporin-4 and myelin oligodendrocyte glycoprotein antibodies in immune-mediated optic neuritis at long-term follow-up. J Neurol Neurosurg Psychiatry. 2019;90(9):1021–6.  https://doi.org/10.1136/jnnp-2019-320493.CrossRefPubMedGoogle Scholar
  45. 45.
    • Waters PJ, Komorowski L, Woodhall M, Lederer S, Majed M, Fryer J, et al. A multicenter comparison of MOG-IgG cell-based assays. Neurology. 2019;92(11):e1250–e5.  https://doi.org/10.1212/WNL.0000000000007096 The authors compared MOG-IgG testing from 3different international centers, which showed good sensitivity and specificity for cell-based assays. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lopez-Chiriboga AS, Majed M, Fryer J, Dubey D, McKeon A, Flanagan EP, et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol. 2018;75(11):1355–63.  https://doi.org/10.1001/jamaneurol.2018.1814.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hyun JW, Woodhall MR, Kim SH, Jeong IH, Kong B, Kim G, et al. Longitudinal analysis of myelin oligodendrocyte glycoprotein antibodies in CNS inflammatory diseases. J Neurol Neurosurg Psychiatry. 2017;88(10):811–7.  https://doi.org/10.1136/jnnp-2017-315998.CrossRefPubMedGoogle Scholar
  48. 48.
    • Cobo-Calvo A, Sepulveda M, d'Indy H, Armangue T, Ruiz A, Maillart E, et al. Usefulness of MOG-antibody titres at first episode to predict the future clinical course in adults. J Neurol. 2019;266(4):806–15.  https://doi.org/10.1007/s00415-018-9160-9 This study analyzes MOG-IgG titer levels at onset of disease, in correlation with the clinical phenotype and assesses the risk of future relapses. CrossRefPubMedGoogle Scholar
  49. 49.
    Stiebel-Kalish H, Hellmann MA, Mimouni M, Paul F, Bialer O, Bach M, et al. Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis? Neurol Neuroimmunol Neuroinflamm. 2019;6(4):e572.  https://doi.org/10.1212/NXI.0000000000000572.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chen JJ, Tobin WO, Majed M, Jitprapaikulsan J, Fryer JP, Leavitt JA, et al. Prevalence of myelin oligodendrocyte glycoprotein and aquaporin-4-IgG in patients in the optic neuritis treatment trial. JAMA Ophthalmol. 2018;136(4):419–22.  https://doi.org/10.1001/jamaophthalmol.2017.6757.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bonnan M, Valentino R, Debeugny S, Merle H, Ferge JL, Mehdaoui H, et al. Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry. 2018;89(4):346–51.  https://doi.org/10.1136/jnnp-2017-316286.CrossRefPubMedGoogle Scholar
  52. 52.
    Magana SM, Keegan BM, Weinshenker BG, Erickson BJ, Pittock SJ, Lennon VA, et al. Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch Neurol. 2011;68(7):870–8.  https://doi.org/10.1001/archneurol.2011.34.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Merle H, Olindo S, Jeannin S, Valentino R, Mehdaoui H, Cabot F, et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol. 2012;130(7):858–62.  https://doi.org/10.1001/archophthalmol.2012.1126.CrossRefPubMedGoogle Scholar
  54. 54.
    • Hacohen Y, Wong YY, Lechner C, Jurynczyk M, Wright S, Konuskan B, et al. Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol. 2018;75(4):478–87.  https://doi.org/10.1001/jamaneurol.2017.4601 This study evaluates treatment response in a large cohort of children with MOGAD. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cobo-Calvo A, Sepulveda M, Rollot F, Armangue T, Ruiz A, Maillart E, et al. Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease. J Neuroinflammation. 2019;16(1):134.  https://doi.org/10.1186/s12974-019-1525-1.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, et al. Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol. 2014;261(1):1–16.  https://doi.org/10.1007/s00415-013-7169-7.CrossRefPubMedGoogle Scholar
  57. 57.
    Whittam D C-CA, Lopez-Chiriboga AS, Pardo S DJ, Brandt A, Berek K, et al. Treatment of MOG-IgG-associated demyelination with rituximab: a multinational study of 98 patients. Neurology. 2018;90(15).Google Scholar
  58. 58.
    Tsantes E, Curti E, Siena E, Granella F. Successful intravenous immunoglobulin treatment in relapsing MOG-antibody-associated disease. Mult Scler Relat Disord. 2019;32:27–9.  https://doi.org/10.1016/j.msard.2019.04.021.CrossRefPubMedGoogle Scholar
  59. 59.
    Pittock SJ, Berthele A, Fujihara K, Kim HJ, Levy M, Palace J, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(7):614–25.  https://doi.org/10.1056/NEJMoa1900866.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Deena A. Tajfirouz
    • 1
  • M. Tariq Bhatti
    • 1
    • 2
  • John J. Chen
    • 1
    • 2
    Email author
  1. 1.Department of NeurologyMayo ClinicRochesterUSA
  2. 2.Department of OphthalmologyMayo ClinicRochesterUSA

Personalised recommendations