Advertisement

Machine Learning and Artificial Intelligence in Neurocritical Care: a Specialty-Wide Disruptive Transformation or a Strategy for Success

  • Fawaz Al-MuftiEmail author
  • Michael Kim
  • Vincent Dodson
  • Tolga Sursal
  • Christian Bowers
  • Chad Cole
  • Corey Scurlock
  • Christian Becker
  • Chirag Gandhi
  • Stephan A. Mayer
Critical Care (Stephan A. Mayer, Section Editor)
  • 72 Downloads
Part of the following topical collections:
  1. Topical Collection on Critical Care

Abstract

Purpose of Review

Neurocritical care combines the complexity of both medical and surgical disease states with the inherent limitations of assessing patients with neurologic injury. Artificial intelligence (AI) has garnered interest in the basic management of these complicated patients as data collection becomes increasingly automated.

Recent Findings

In this opinion article, we highlight the potential AI has in aiding the clinician in several aspects of neurocritical care, particularly in monitoring and managing intracranial pressure, seizures, hemodynamics, and ventilation. The model-based method and data-driven method are currently the two major AI methods for analyzing critical care data. Both are able to analyze the vast quantities of patient data that are accumulated in the neurocritical care unit.

Summary

AI has the potential to reduce healthcare costs, minimize delays in patient management, and reduce medical errors. However, these systems are an aid to, not a replacement for, the clinician’s judgment.

Keywords

Multimodality monitoring Artificial intelligence Neurocritical care Closed-loop system 

Notes

Acknowledgments

The editors would like to thank Dr. John Brust for taking the time to review this manuscript.

Compliance with Ethical Standards

Conflict of Interest

Fawaz Al-Mufti, Michael Kim, Vincent Dodson, Tolga Sursal, Christian Bowers, Chad Cole, Corey Scurlock, Christian Becker, Chirag Gandhi, and Stephan A. Mayer each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Wartenberg KE, Schmidt JM, Mayer SA. Multimodality monitoring in neurocritical care. Crit Care Clin. 2007;23(3):507–38.  https://doi.org/10.1016/j.ccc.2007.06.002.CrossRefPubMedGoogle Scholar
  2. 2.
    Hanson CW 3rd, Marshall BE. Artificial intelligence applications in the intensive care unit. Crit Care Med. 2001;29(2):427–35.CrossRefGoogle Scholar
  3. 3.
    Bennett CC, Hauser K. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artif Intell Med. 2013;57(1):9–19.  https://doi.org/10.1016/j.artmed.2012.12.003.CrossRefPubMedGoogle Scholar
  4. 4.
    Uemura K, Sugimachi M. Automated cardiovascular drug infusion system to control hemodynamics. Adv Biomed Eng. 2013;2:32–7.  https://doi.org/10.14326/abe.2.32.CrossRefGoogle Scholar
  5. 5.
    Rinehart J, Liu N, Alexander B, Cannesson M. Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization? Anesth Analg. 2012;114(1):130–43.  https://doi.org/10.1213/ANE.0b013e318230e9e0.CrossRefPubMedGoogle Scholar
  6. 6.
    Tehrani FT. A closed-loop system for control of the fraction of inspired oxygen and the positive end-expiratory pressure in mechanical ventilation. Comput Biol Med. 2012;42(11):1150–6.  https://doi.org/10.1016/j.compbiomed.2012.09.007.CrossRefPubMedGoogle Scholar
  7. 7.
    Tehrani F, Rogers M, Lo T, Malinowski T, Afuwape S, Lum M, et al. A dual closed-loop control system for mechanical ventilation. J Clin Monit Comput. 2004;18(2):111–29.CrossRefGoogle Scholar
  8. 8.
    Wysocki M, Brunner JX. Closed-loop ventilation: an emerging standard of care? Crit Care Clin. 2007;23(2):223–40, ix.  https://doi.org/10.1016/j.ccc.2006.12.011.CrossRefPubMedGoogle Scholar
  9. 9.
    Lellouche F, Brochard L. Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare). Best Pract Res Clin Anaesthesiol. 2009;23(1):81–93.CrossRefGoogle Scholar
  10. 10.
    Liu N, Chazot T, Hamada S, Landais A, Boichut N, Dussaussoy C, et al. Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth Analg. 2011;112(3):546–57.  https://doi.org/10.1213/ANE.0b013e318205680b.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu N, Chazot T, Genty A, Landais A, Restoux A, McGee K, et al. Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study. Anesthesiology. 2006;104(4):686–95.CrossRefGoogle Scholar
  12. 12.
    Puri GD, Kumar B, Aveek J. Closed-loop anaesthesia delivery system (CLADS) using bispectral index: a performance assessment study. Anaesth Intensive Care. 2007;35(3):357–62.CrossRefGoogle Scholar
  13. 13.
    Janda M, Simanski O, Bajorat J, Pohl B, Noeldge-Schomburg GF, Hofmockel R. Clinical evaluation of a simultaneous closed-loop anaesthesia control system for depth of anaesthesia and neuromuscular blockade*. Anaesthesia. 2011;66(12):1112–20.  https://doi.org/10.1111/j.1365-2044.2011.06875.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Eleveld DJ, Proost JH, Wierda JMKH. Evaluation of a closed-loop muscle relaxation control system. Anesth Analg. 2005;101(3):758–64.  https://doi.org/10.1213/01.ane.0000167069.54613.50.CrossRefPubMedGoogle Scholar
  15. 15.
    Cavalcanti AB, Silva E, Pereira AJ, Caldeira-Filho M, Almeida FP, Westphal GA, et al. A randomized controlled trial comparing a computer-assisted insulin infusion protocol with a strict and a conventional protocol for glucose control in critically ill patients. J Crit Care. 2009;24(3):371–8.  https://doi.org/10.1016/j.jcrc.2009.05.005.CrossRefPubMedGoogle Scholar
  16. 16.
    Rinehart J, Lee C, Cannesson M, Dumont G. Closed-loop fluid resuscitation: robustness against weight and cardiac contractility variations. Anesth Analg. 2013;117(5):1110–8.  https://doi.org/10.1213/ANE.0b013e3182930050.CrossRefPubMedGoogle Scholar
  17. 17.
    Kramer GC, Kinsky MP, Prough DS, Salinas J, Sondeen JL, Hazel-Scerbo ML, et al. Closed-loop control of fluid therapy for treatment of hypovolemia. J Trauma. 2008;64(4 Suppl):S333–41.  https://doi.org/10.1097/TA.0b013e31816bf517.CrossRefPubMedGoogle Scholar
  18. 18.
    Buchman TG. Novel representation of physiologic states during critical illness and recovery. Crit Care. 2010;14(2):127.  https://doi.org/10.1186/cc8868.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Buchman TG. Physiologic stability and physiologic state. J Trauma. 1996;41(4):599–605.CrossRefGoogle Scholar
  20. 20.
    Ursino M, Lodi CA, Rossi S, Stocchetti N. Estimation of the main factors affecting ICP dynamics by mathematical analysis of PVI tests. Acta Neurochir Suppl. 1998;71:306–9.PubMedGoogle Scholar
  21. 21.
    Coveney PV, Fowler PW. Modelling biological complexity: a physical scientist’s perspective. J R Soc Interface. 2005;2(4):267–80.  https://doi.org/10.1098/rsif.2005.0045.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ashby D. Bayesian statistics in medicine: a 25 year review. Stat Med. 2006;25(21):3589–631.  https://doi.org/10.1002/sim.2672.CrossRefPubMedGoogle Scholar
  23. 23.
    Peelen L, de Keizer NF, Jonge E, Bosman RJ, Abu-Hanna A, Peek N. Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the intensive care unit. J Biomed Inform. 2010;43(2):273–86.  https://doi.org/10.1016/j.jbi.2009.10.002.CrossRefPubMedGoogle Scholar
  24. 24.
    Stell A, Sinnott R, Jiang J, Donald R, Chambers I, Citerio G, et al. Federating distributed clinical data for the prediction of adverse hypotensive events. Philos Transact A Math Phys Eng Sci. 2009;367(1898):2679–90.  https://doi.org/10.1098/rsta.2009.0042.CrossRefGoogle Scholar
  25. 25.
    McQuatt A, Sleeman D, Andrews PJ, Corruble V, Jones PA. Discussing anomalous situations using decision trees: a head injury case study. Methods Inf Med. 2001;40(5):373–9.CrossRefGoogle Scholar
  26. 26.
    Vath A, Meixensberger J, Dings J, Meinhardt M, Roosen K. Prognostic significance of advanced neuromonitoring after traumatic brain injury using neural networks. Zentralbl Neurochir. 2000;61(1):2–6.CrossRefGoogle Scholar
  27. 27.
    Cohen MJ, Grossman AD, Morabito D, Knudson MM, Butte AJ, Manley GT. Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis. Crit Care. 2010;14(1):R10.  https://doi.org/10.1186/cc8864.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lilly CM, Zubrow MT, Kempner KM, Reynolds HN, Subramanian S, Eriksson EA, et al. Critical care telemedicine: evolution and state of the art. Crit Care Med. 2014;42(11):2429–36.  https://doi.org/10.1097/ccm.0000000000000539.CrossRefPubMedGoogle Scholar
  29. 29.
    Becker CD, Fusaro MV, Scurlock C. Deciphering factors that influence the value of tele-ICU programs. Intensive Care Med. 2019;45(7):1046–51.  https://doi.org/10.1007/s00134-019-05591-4.CrossRefPubMedGoogle Scholar
  30. 30.
    Becker CD, Fusaro MV, Scurlock C. Telemedicine in the ICU: clinical outcomes, economic aspects, and trainee education. Curr Opin Anaesthesiol. 2019;32:129–35.  https://doi.org/10.1097/aco.0000000000000704.CrossRefPubMedGoogle Scholar
  31. 31.
    Kindle RD, Badawi O, Celi LA, Sturland S. Intensive care unit telemedicine in the era of big data, artificial intelligence, and computer clinical decision support systems. Crit Care Clin. 2019;35(3):483–95.  https://doi.org/10.1016/j.ccc.2019.02.005.CrossRefPubMedGoogle Scholar
  32. 32.
    Lilly CM, Cody S, Zhao H, Landry K, Baker SP, McIlwaine J, et al. Hospital mortality, length of stay, and preventable complications among critically ill patients before and after tele-ICU reengineering of critical care processes. JAMA. 2011;305(21):2175–83.  https://doi.org/10.1001/jama.2011.697.CrossRefPubMedGoogle Scholar
  33. 33.
    Lilly CM, McLaughlin JM, Zhao H, Baker SP, Cody S, Irwin RS. A multicenter study of ICU telemedicine reengineering of adult critical care. Chest. 2014;145(3):500–7.  https://doi.org/10.1378/chest.13-1973.CrossRefPubMedGoogle Scholar
  34. 34.
    Badawi O, Liu X, Hassan E, Amelung PJ, Swami S. Evaluation of ICU risk models adapted for use as continuous markers of severity of illness throughout the ICU stay. Crit Care Med. 2018;46(3):361–7.  https://doi.org/10.1097/ccm.0000000000002904.CrossRefPubMedGoogle Scholar
  35. 35.
    Badawi O, Breslow MJ. Readmissions and death after ICU discharge: development and validation of two predictive models. PLoS One. 2012;7(11):e48758.  https://doi.org/10.1371/journal.pone.0048758.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Escobar GJ, Turk BJ, Ragins A, Ha J, Hoberman B, LeVine SM, et al. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J Hosp Med. 2016;11(Suppl 1):S18–s24.  https://doi.org/10.1002/jhm.2652.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lilly CM, Motzkus C, Rincon T, Cody SE, Landry K, Irwin RS. ICU telemedicine program financial outcomes. Chest. 2017;151(2):286–97.  https://doi.org/10.1016/j.chest.2016.11.029.CrossRefPubMedGoogle Scholar
  38. 38.
    Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Sci Data. 2018;5:180178.  https://doi.org/10.1038/sdata.2018.178.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McShea M, Holl R, Badawi O, Riker RR, Silfen E. The eICU research institute-a collaboration between industry, health-care providers, and academia. IEEE Eng Med Biol Mag. 2010;29(2):18–25.  https://doi.org/10.1109/memb.2009.935720.CrossRefPubMedGoogle Scholar
  40. 40.
    Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716–20.  https://doi.org/10.1038/s41591-018-0213-5.CrossRefPubMedGoogle Scholar
  41. 41.
    Zoerle T, Lombardo A, Colombo A, Longhi L, Zanier ER, Rampini P, et al. Intracranial pressure after subarachnoid hemorrhage. Crit Care Med. 2015;43(1):168–76.  https://doi.org/10.1097/ccm.0000000000000670.CrossRefPubMedGoogle Scholar
  42. 42.
    Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101(3):408–16.  https://doi.org/10.3171/jns.2004.101.3.0408.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang F, Feng M, Pan SJ, Loy LY, Guo W, Zhang Z, et al. Artificial neural network based intracranial pressure mean forecast algorithm for medical decision support. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7111–4.Google Scholar
  44. 44.
    Diedler J, Sykora M, Rupp A, Poli S, Karpel-Massler G, Sakowitz O, et al. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke. 2009;40(3):815–9.  https://doi.org/10.1161/strokeaha.108.531020.CrossRefPubMedGoogle Scholar
  45. 45.
    Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30(4):733–8.CrossRefGoogle Scholar
  46. 46.
    Kirkness CJ, Burr RL, Mitchell PH. Intracranial pressure variability and long-term outcome following traumatic brain injury. Acta Neurochir Suppl. 2008;102:105–8.CrossRefGoogle Scholar
  47. 47.
    Hornero R, Aboy M, Abasolo D, McNames J, Goldstein B. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans Biomed Eng. 2005;52(10):1671–80.  https://doi.org/10.1109/tbme.2005.855722.CrossRefPubMedGoogle Scholar
  48. 48.
    Rangel-Castillo L, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin. 2008;26(2):521–41.  https://doi.org/10.1016/j.ncl.2008.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cloostermans MC, de Vos CC, van Putten MJ. A novel approach for computer assisted EEG monitoring in the adult ICU. Clin Neurophysiol. 2011;122(10):2100–9.  https://doi.org/10.1016/j.clinph.2011.02.035.CrossRefPubMedGoogle Scholar
  50. 50.
    Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods. 2010;191(1):101–9.  https://doi.org/10.1016/j.jneumeth.2010.05.020.CrossRefPubMedGoogle Scholar
  51. 51.
    Pravin Kumar S, Sriraam N, Benakop PG, Jinaga BC. Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst Appl. 2010;37(4):3284–91.  https://doi.org/10.1016/j.eswa.2009.09.051.CrossRefGoogle Scholar
  52. 52.
    Brophy GM, Bell R, Claassen J, Alldredge B, Bleck TP, Glauser T, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):3–23.  https://doi.org/10.1007/s12028-012-9695-z.CrossRefPubMedGoogle Scholar
  53. 53.
    Aggarwal M, Khan IA. Hypertensive crisis: hypertensive emergencies and urgencies. Cardiol Clin. 24(1):135–46.  https://doi.org/10.1016/j.ccl.2005.09.002.CrossRefGoogle Scholar
  54. 54.
    Salgado DR, Silva E, Vincent J-L. Control of hypertension in the critically ill: a pathophysiological approach. Ann Intensive Care. 2013;3:17.  https://doi.org/10.1186/2110-5820-3-17.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Borel C, Briegel J, Hanley DF. Respiratory management in neurological critical care: basics and techniques of artificial ventilation. In: Neurocritical Care. Springer; 1994; pp 139–156.Google Scholar
  56. 56.
    Stocchetti N, Maas AI, Chieregato A, van der Plas AA. Hyperventilation in head injury: a review. Chest. 2005;127(5):1812–27.  https://doi.org/10.1378/chest.127.5.1812.CrossRefPubMedGoogle Scholar
  57. 57.
    Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58(3):571–6.CrossRefGoogle Scholar
  58. 58.
    Muizelaar JP, van der Poel HG, Li ZC, Kontos HA, Levasseur JE. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg. 1988;69(6):923–7.  https://doi.org/10.3171/jns.1988.69.6.0923.CrossRefPubMedGoogle Scholar
  59. 59.
    Ulrich CT, Fung C, Vatter H, Setzer M, Gueresir E, Seifert V, et al. Occurrence of vasospasm and infarction in relation to a focal monitoring sensor in patients after SAH: placing a bet when placing a probe? PLoS One. 2013;8(5):e62754.  https://doi.org/10.1371/journal.pone.0062754.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kistka H, Dewan MC, Mocco J. Evidence-based cerebral vasospasm surveillance. Neurol Res Int. 2013;2013:256713–6.  https://doi.org/10.1155/2013/256713.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Heran NS, Hentschel SJ, Toyota BD. Jugular bulb oximetry for prediction of vasospasm following subarachnoid hemorrhage. Can J Neurol Sci. 2004;31(1):80–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fawaz Al-Mufti
    • 1
    • 2
    • 3
    Email author
  • Michael Kim
    • 1
  • Vincent Dodson
    • 4
  • Tolga Sursal
    • 1
  • Christian Bowers
    • 1
  • Chad Cole
    • 1
  • Corey Scurlock
    • 5
    • 6
  • Christian Becker
    • 5
    • 7
  • Chirag Gandhi
    • 1
  • Stephan A. Mayer
    • 8
  1. 1.Departments of NeurosurgeryWestchester Medical Center at New York Medical CollegeValhallaUSA
  2. 2.Departments of NeurologyWestchester Medical Center at New York Medical CollegeValhallaUSA
  3. 3.Neuroendovascular Surgery and Neurocritical Care AttendingWestchester Medical Center at New York Medical CollegeValhallaUSA
  4. 4.Department of Neurosurgery, New Jersey Medical SchoolRutgers UniversityNewarkUSA
  5. 5.eHealth Center, Westchester Medical Center Health NetworkValhallaUSA
  6. 6.Departments of AnesthesiologyWestchester Medical Center at New York Medical CollegeValhallaUSA
  7. 7.Departments of Internal MedicineWestchester Medical Center at New York Medical CollegeValhallaUSA
  8. 8.Department of NeurologyHenry Ford Health SystemDetroitUSA

Personalised recommendations