Movement Disorders in Metabolic Disorders

  • José Luiz Pedroso
  • Orlando G. Barsottini
  • Alberto J. EspayEmail author
Neurology of Systemic Diseases (J Biller, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neurology of Systemic Disease


Purpose of Review

We provide a review of the movement disorders that complicate selected metabolic disorders, including the abnormal movements that may appear during or after their treatment.

Recent Findings

Movement disorders may be underrecognized when arising in the context of a broad range of metabolic disorders.


Abnormal movements may occur as the initial manifestation of a systemic disease, at any time during its course, or as a result of the medical interventions required for its management. Ascertaining movement phenomenology in acute and subacute presentations may assist in the determination of the specific underlying metabolic disorder. The management of movement disorders associated with metabolic disorders depends on the underlying pathophysiology.


Movement disorders Abnormal movements Metabolic disorders Electrolytes Internal medicine 


Compliance with Ethical Standards

Conflict of Interest

Orlando Barsottini and José Luiz Pedroso each declare no potential conflicts of interest. Alberto Espay has received grant support from the NIH, Great Lakes Neurotechnologies, and the Michael J Fox Foundation; personal compensation as a consultant/scientific advisory board member for Abbvie, TEVA, Impax, Acadia, Acorda, Cynapsus/Sunovion, Lundbeck, and USWorldMeds; publishing royalties from Lippincott Williams & Wilkins, Cambridge University Press, and Springer; and honoraria from Abbvie, UCB, USWorldMeds, Lundbeck, Acadia, the American Academy of Neurology, and the Movement Disorders Society.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

11910_2019_921_MOESM1_ESM.mp4 (268 kb)
Supplementary Video 1 We illustrate with 6 patients selected movement disorders associated with metabolic disorders. Segment 1: chorea in the setting of primary hypoparathyroidism with basal ganglia calcification (Courtesy of Dr. Thiago Cardoso Vale, from the Department of Neurology, Federal University of Juiz de For a, MG, Brazil). Segment 2: Trousseau sign in hypomagnesemia. Segment 3: hemichorea-hemiballism due to non-ketotic hyperglycemia. Segment 4: asterixis in hepatic failure (Courtesy of Dr. Guilherme Felga, from the Albert Einstein Hospital, SP, Brazil). Segment 5: tremor and myoclonus in uremic encephalopathy/renal failure. Segment 6: myoclonus in post-cardiac arrest anoxic encephalopathy. Segment 7: post-pump chorea after cardiac valve replacement surgery. (HTML 268 kb)


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Stoessl AJ, Mckeown MJ. Movement disorders. Handb Clin Neurol. 2016;136:957–69.PubMedGoogle Scholar
  2. 2.
    • Poewe W, Djamshidian-Tehrani A. Movement disorders in systemic diseases. Neurol Clin. 2015;33(1):269–97 Movement disorders may be the initial manifestation of selected systemic diseases. In this review the authors discuss the most common movement disorders which may present in infectious, autoimmune, paraneoplastic, and also in metabolic and endocrine diseases. PubMedGoogle Scholar
  3. 3.
    Riggs JE. Neurologic manifestations of electrolyte disturbances. Neurol Clin. 2002;20(1):227–39.PubMedGoogle Scholar
  4. 4.
    Dallocchio C, Matinella A, Arbasino C, Arno’ N, Glorioso M, Sciarretta M, et al. Movement disorders in emergency settings: a prospective study. Neurol Sci. 2019;40(1):133–8Google Scholar
  5. 5.
    Chen C, Zheng H, Yang L, Hu Z. Chorea-ballism associated with ketotic hyperglycemia. Neurol Sci. 2014;35(12):1851–5.PubMedGoogle Scholar
  6. 6.
    Seifter JL, Samuels MA. Uremic encephalopathy and other brain disorders associated with renal failure. Semin Neurol. 2011;31(2):139–43.PubMedGoogle Scholar
  7. 7.
    Ellul MA, Cross TJ, Larner AJ. Asterixis. Pract Neurol. 2017;17(1):60–2.PubMedGoogle Scholar
  8. 8.
    Munhoz RP, Teive HA, Troiano AR, Hauck PR, Herdoiza Leiva MH. Parkinson’s disease and thyroid dysfunction. Parkinsonism Relat Disord. 2004;10(6):381–3.PubMedGoogle Scholar
  9. 9.
    Baizabal-Carvallo JF, Jankovic J. Movement disorders in autoimmune diseases. Mov Disord. 2012;27(8):935–46.PubMedGoogle Scholar
  10. 10.
    Miranda M, Bustamante ML, Campero M, Wainstein E, Toche P, Espay AJ, et al. Movement disorders in non-encephalopathic Hashimoto’s thyroiditis. Parkinsonism Relat Disord. 2018;55:141–2.PubMedGoogle Scholar
  11. 11.
    Tan EK, Chan LL. Movement disorders associated with hyperthyroidism: expanding the phenotype. Mov Disord. 2006;21(7):1054–15.PubMedGoogle Scholar
  12. 12.
    Tan EK, Lo YL, Chan LL. Graves disease and isolated orthostatic tremor. Neurology. 2008;70(16 Pt 2):1497–8.PubMedGoogle Scholar
  13. 13.
    Orija IB, Gupta M, Zimmerman RS. Graves’ disease and stiff-person (stiff-man) syndrome: case report and literature review. Endocr Pract. 2005;11(4):259–64.PubMedGoogle Scholar
  14. 14.
    Kim HT, Edwards MJ, Lakshmi Narsimhan R, Bhatia KP. Hyperthyroidism exaggerating parkinsonian tremor: a clinical lesson. Parkinsonism Relat Disord. 2005;11(5):331–2.PubMedGoogle Scholar
  15. 15.
    Yu JH, Weng YM. Acute chorea as a presentation of Graves disease: case report and review. Am J Emerg Med. 2009;27(3):369.e1–3.Google Scholar
  16. 16.
    Kondziella D, Brederlau A, Asztely F. Choreathetosis due to abuse of levothyroxine. J Neurol. 2009;256(12):2106–8.PubMedGoogle Scholar
  17. 17.
    Gálvez-Jiménez N, Hanson MR, Cabral J. Dopa-resistant parkinsonism, oculomotor disturbances, chorea, mirror movements, dyspraxia, and dementia: the expanding clinical spectrum of hypoparathyroidism. A case report. Mov Disord. 2000;15(6):1273–6.PubMedGoogle Scholar
  18. 18.
    Micheli F, Pardal MF, Parera IC, Giannaula R. Idiopathic hypoparathyroidism and paroxysmal kinesigenic choreoathetosis. Ann Neurol. 1989;26(3):415.PubMedGoogle Scholar
  19. 19.
    Quintáns B, Oliveira J, Sobrido MJ. Primary familial brain calcifications. Handb Clin Neurol. 2018;147:307–17.PubMedGoogle Scholar
  20. 20.
    Vaamonde J, Legarda I, Jimenez-Jimenez J, Zubieta JL, Obeso JA. Levodopa-responsive parkinsonism associated with basal ganglia calcification and primary hypoparathyroidism. Mov Disord. 1993;8(3):398–400.PubMedGoogle Scholar
  21. 21.
    Uncini A, Tartaro A, Di Stefano E, Gambi D. Parkinsonism, basal ganglia calcification and epilepsy as late complications of postoperative hypoparathyroidism. J Neurol. 1985;232(2):109–11.PubMedGoogle Scholar
  22. 22.
    Song CY, Zhao ZX, Li W, Sun CC, Liu YM. Pseudohypoparathyroidism with basal ganglia calcification: a case report of rare cause of reversible parkinsonism. Medicine (Baltimore). 2017;96(11):e6312.Google Scholar
  23. 23.
    Dure LS 4th, Mussell HG. Paroxysmal dyskinesia in a patient with pseudohypoparathyroidism. Mov Disord. 1998;13(4):746–8.PubMedGoogle Scholar
  24. 24.
    De Rosa A, Rinaldi C, Tucci T, Pappatà S, Rossi F, Morra VB, et al. Co-existence of primary hyperparathyroidism and Parkinson's disease in three patients: an incidental finding? Parkinsonism Relat Disord. 2011;17(10):771–3.PubMedGoogle Scholar
  25. 25.
    Ohya Y, Osaki M, Sakai S, Kimura S, Yasuda C, Ago T, et al. A case of hyperparathyroidism-associated parkinsonism successfully treated with cinacalcet hydrochloride, a calcimimetic. BMC Neurol. 2018;18(1):62.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Singh TD, Fugate JE, Rabinstein AA. Central pontine and extrapontine myelinolysis: a systematic review. Eur J Neurol. 2014;21(12):1443–50.PubMedGoogle Scholar
  27. 27.
    Tan AH, Lim SY, Ng RX. Osmotic demyelination syndrome with evolving movement disorders. JAMA Neurol. 2018;75(7):888–9.PubMedGoogle Scholar
  28. 28.
    de Souza A. Movement disorders and the osmotic demyelination syndrome. Parkinsonism Relat Disord. 2013;19(8):709–16.PubMedGoogle Scholar
  29. 29.
    Seah ABH, Chan LL, Wong MC, Tan EK. Evolving spectrum of movement disorders in extrapontine and central pontine myelinolysis. Parkinsonism Relat Disord. 2002;9(2):117–9.PubMedGoogle Scholar
  30. 30.
    Espay AJ. Neurologic complications of electrolyte disturbances and acid–base balance. In: Biller J, Ferro JM, editors. Handbook of Clinical Neurology, Vol. 119 (3rd series) Neurologic Aspects of Systemic Disease Part I: Elsevier B.V.; 2014.Google Scholar
  31. 31.
    Grasso D, Borreggine C, Perfetto F, Bertozzi V, Trivisano M, Specchio LM, et al. Lentiform fork sign: a magnetic resonance finding in a case of acute metabolic acidosis. Neuroradiol J. 2014;27(3):288–92.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lin JJ, Chang MK. Hemiballism-hemichorea and non-ketotic hyperglycaemia. J Neurol Neurosurg Psychiatry. 1994;57(6):748–50Google Scholar
  33. 33.
    Duker AP, Espay AJ. Images in clinical medicine. Hemichorea–hemiballism after diabetic ketoacidosis. N Engl J Med. 2010;363(17):e27.PubMedGoogle Scholar
  34. 34.
    Li JY, Chen R. Increased intracortical inhibition in hyperglycemic hemichorea-hemiballism. Mov Disord. 2015;30(2):198–205.PubMedGoogle Scholar
  35. 35.
    Atay M, Yetis H, Kurtcan S, Aralasmak A, Alkan A. Susceptibility weighted imaging features of nonketotic hyperglycemia: unusual cause of hemichorea-hemiballismus. J Neuroimaging. 2015;25(2):319–24.PubMedGoogle Scholar
  36. 36.
    Wolz M, Reichmann H, Reuner U, Storch A, Gerber J. Hypoglycemia-induced choreoathetosis associated with hyperintense basal ganglia lesions in T1-weighted brain MRI. Mov Disord. 2010;25(7):966–8.PubMedGoogle Scholar
  37. 37.
    Renjen PN, Khanna L, Rastogi R, Khan NI. Acquired hepatocerebral degeneration. BMJ Case Rep. 2013;18:2013.Google Scholar
  38. 38.
    Ferrara J, Jankovic J. Acquired hepatocerebral degeneration. J Neurol. 2009;256(3):320–32.PubMedGoogle Scholar
  39. 39.
    Thobois S, Giraud P, Debat P, Gouttard M, Maurizi A, Perret-Liaudet A, et al. Orofacial dyskinesias in a patient with primary biliary cirrhosis: a clinicopathological case report and review. Mov Disord. 2002;17(2):415–9.PubMedGoogle Scholar
  40. 40.
    Klos KJ, Ahlskog JE, Josephs KA, Fealey RD, Cowl CT, Kumar N. Neurologic spectrum of chronic liver failure and basal ganglia T1 hyperintensity on magnetic resonance imaging: probable manganese neurotoxicity. Arch Neurol. 2005;62(9):1385–90.PubMedGoogle Scholar
  41. 41.
    Stracciari A, Guarino M, Pazzaglia P, Marchesini G, Pisi P. Acquired hepatocerebral degeneration: full recovery after liver transplantation. J Neurol Neurosurg Psychiatry. 2001;70(1):136–7.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Fernández-Rodriguez R, Contreras A, De Villoria JG, Grandas F. Acquired hepatocerebral degeneration: clinical characteristics and MRI findings. Eur J Neurol. 2010;17(12):1463–70.PubMedGoogle Scholar
  43. 43.
    Lee PH, Shin DH, Kim JW, Song YS, Kim HS. Parkinsonism with basal ganglia lesions in a patient with uremia: evidence of vasogenic edema. Parkinsonism Relat Disord. 2006;12(2):93–6.PubMedGoogle Scholar
  44. 44.
    Badhwar A, Berkovic SF, Dowling JP, Gonzales M, Narayanan S, Brodtmann A, et al. Action myoclonus-renal failure syndrome: characterization of a unique cerebro-renal disorder. Brain. 2004;127(Pt 10):2173–82.PubMedGoogle Scholar
  45. 45.
    Janzen L, Rich JA, Vercaigne LM. An overview of levodopa in the management of restless legs syndrome in a dialysis population: pharmacokinetics, clinical trials, and complications of therapy. Ann Pharmacother. 1999;33(1):86–92.PubMedGoogle Scholar
  46. 46.
    Finelli PF, Singh JU. A syndrome of bilateral symmetrical basal ganglia lesions in diabetic dialysis patients. Am J Kidney Dis. 2014;63(2):286–8.PubMedGoogle Scholar
  47. 47.
    Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82(3):673–84.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Fugate JE. Anoxic-ischemic brain injury. Neurol Clin. 2017;35(4):601–11.PubMedGoogle Scholar
  49. 49.
    Venkatesan A, Frucht S. Movement disorders after resuscitation from cardiac arrest. Neurol Clin. 2006;24(1):123–32.PubMedGoogle Scholar
  50. 50.
    Wijdicks EF, Parisi JE, Sharbrough FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35(2):239–43.PubMedGoogle Scholar
  51. 51.
    Aicua Rapun I, Novy J, Solari D, Oddo M, Rossetti AO. Early Lance-Adams syndrome after cardiac arrest: prevalence, time to return to awareness, and outcome in a large cohort. Resuscitation. 2017;115:169–72.PubMedGoogle Scholar
  52. 52.
    Lance JW, Adams RD. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain. 1963;86:111–36.PubMedGoogle Scholar
  53. 53.
    Cho AR, Kwon JY, Kim JY, Kim ES, Kim HY. Acute onset Lance-Adams syndrome following brief exposure to severe hypoxia without cardiac arrest—a case report. Korean J Anesthesiol. 2013;65(4):341–4.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kirkham FJ, Haywood P, Kashyape P, Borbone J, Lording A, Pryde K, et al. Movement disorder emergencies in childhood. Eur J Paediatr Neurol. 2011;15(5):390–404.PubMedGoogle Scholar
  55. 55.
    Bisciglia M, London F, Hulin J, Peeters A, Ivanoiu A, Jeanjean A. Choreoathetotic syndrome following cardiac surgery. J Clin Anesth. 2017;36:59–61.PubMedGoogle Scholar
  56. 56.
    Bruyn GW, Padberg G. Chorea and polycythaemia. Eur Neurol. 1984;23(1):26–33.PubMedGoogle Scholar
  57. 57.
    Midi I, Dib H, Köseoglu M, Afsar N, Günal DI. Hemichorea associated with polycythaemia vera. Neurol Sci. 2006;27(6):439–41.PubMedGoogle Scholar
  58. 58.
    Edwards PD, Prosser R, Wells CE. Chorea, polycythaemia, and cyanotic heart disease. J Neurol Neurosurg Psychiatry. 1975;38(8):729–39.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis. 2012;46(1):1–18.PubMedGoogle Scholar
  60. 60.
    Russo N, Edwards M, Andrews T, O'Brien M, Bhatia KP. Hereditary haemochromatosis is unlikely to cause movement disorders—a critical review. J Neurol. 2004;251(7):849–52.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José Luiz Pedroso
    • 1
  • Orlando G. Barsottini
    • 1
  • Alberto J. Espay
    • 2
    Email author
  1. 1.Division of General Neurology and Ataxia Unit, Department of NeurologyUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Gardner Neuroscience Institute, Gardner Center for Parkinson’s Disease and Movement DisordersUniversity of CincinnatiCincinnatiUSA

Personalised recommendations