Advertisement

Promoting Brain Repair and Regeneration After Stroke: a Plea for Cell-Based Therapies

  • Ania Dabrowski
  • Thomas J. Robinson
  • Ryan J. FellingEmail author
Neurorehabilitation and Recovery (J Krakauer and T Kitago, Section Editors)
  • 90 Downloads
Part of the following topical collections:
  1. Topical Collection on Neurorehabilitation and Recovery

Abstract

Purpose of Review

After decades of hype, cell-based therapies are emerging into the clinical arena for the purposes of promoting recovery after stroke. In this review, we discuss the most recent science behind the role of cell-based therapies in ischemic stroke and the efforts to translate these therapies into human clinical trials.

Recent Findings

Preclinical data support numerous beneficial effects of cell-based therapies in both small and large animal models of ischemic stroke. These benefits are driven by multifaceted mechanisms promoting brain repair through immunomodulation, trophic support, circuit reorganization, and cell replacement.

Summary

Cell-based therapies offer tremendous potential for improving outcomes after stroke through multimodal support of brain repair. Based on recent clinical trials, cell-based therapies appear both feasible and safe in all phases of stroke. Ongoing translational research and clinical trials will further refine these therapies and have the potential to transform the approach to stroke recovery and rehabilitation.

Keywords

Neurogenesis Stem cells Transplantation Stroke recovery Neuroplasticity Brain regeneration 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ania Dabrowski and Thomas J. Robinson each declare no potential conflict of interest.

Ryan J. Felling reports grants from NIH/NINDS for stem cell research (K08NS097704).

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ramon y Cajal S. Degeneration and regeneration of the nervous system. London: Oxford University Press; 1928.Google Scholar
  2. 2.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.CrossRefGoogle Scholar
  3. 3.
    Ramalho-Santos M, Willenbring H. On the origin of the term "stem cell". Cell Stem Cell. 2007;1(1):35–8.  https://doi.org/10.1016/j.stem.2007.05.013.CrossRefPubMedGoogle Scholar
  4. 4.
    Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K. The stem cell continuum: cell cycle, injury, and phenotype lability. Ann N Y Acad Sci. 2007;1106:20–9.  https://doi.org/10.1196/annals.1392.016.CrossRefPubMedGoogle Scholar
  5. 5.
    Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58.  https://doi.org/10.1016/S0065-230X(08)00005-5.CrossRefPubMedGoogle Scholar
  6. 6.
    Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, et al. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab. 2010;30(8):1487–93.  https://doi.org/10.1038/jcbfm.2010.32.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen SJ, Chang CM, Tsai SK, Chang YL, Chou SJ, Huang SS, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev. 2010;19(11):1757–67.  https://doi.org/10.1089/scd.2009.0452.CrossRefPubMedGoogle Scholar
  8. 8.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefGoogle Scholar
  9. 9.
    Ilic D, Ogilvie C. Concise review: human embryonic stem cells-what have we done? What are we doing? Where are we going? Stem Cells. 2017;35(1):17–25.  https://doi.org/10.1002/stem.2450.CrossRefPubMedGoogle Scholar
  10. 10.
    Ware CB. Concise review: lessons from naive human pluripotent cells. Stem Cells. 2017;35(1):35–41.  https://doi.org/10.1002/stem.2507.CrossRefPubMedGoogle Scholar
  11. 11.
    Erdo F, Buhrle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab. 2003;23(7):780–5.  https://doi.org/10.1097/01.WCB.0000071886.63724.FB.CrossRefPubMedGoogle Scholar
  12. 12.
    Peljto M, Wichterle H. Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol. 2011;21(1):43–51.  https://doi.org/10.1016/j.conb.2010.09.012.CrossRefPubMedGoogle Scholar
  13. 13.
    Gaspard N, Vanderhaeghen P. Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol. 2010;20(1):37–43.  https://doi.org/10.1016/j.conb.2009.12.001.CrossRefPubMedGoogle Scholar
  14. 14.
    Elkabetz Y, Studer L. Human ESC-derived neural rosettes and neural stem cell progression. Cold Spring Harb Symp Quant Biol. 2008;73:377–87.  https://doi.org/10.1101/sqb.2008.73.052.CrossRefPubMedGoogle Scholar
  15. 15.
    Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J, et al. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci. 2009;29(3):562–74.  https://doi.org/10.1111/j.1460-9568.2008.06599.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. 2006;129(Pt 12):3238–48.  https://doi.org/10.1093/brain/awl261.CrossRefPubMedGoogle Scholar
  17. 17.
    Daadi MM, Maag AL, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One. 2008;3(2):e1644.  https://doi.org/10.1371/journal.pone.0001644.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hayashi J, Takagi Y, Fukuda H, Imazato T, Nishimura M, Fujimoto M, et al. Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J Cereb Blood Flow Metab. 2006;26(7):906–14.  https://doi.org/10.1038/sj.jcbfm.9600247.CrossRefPubMedGoogle Scholar
  19. 19.
    Gage FH. Neurogenesis in the adult brain. J Neurosci. 2002;22(3):612–3.CrossRefGoogle Scholar
  20. 20.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703–16.CrossRefGoogle Scholar
  21. 21.
    Liu YP, Lang BT, Baskaya MK, Dempsey RJ, Vemuganti R. The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathol. 2009;117(5):469–80.  https://doi.org/10.1007/s00401-009-0516-1.CrossRefPubMedGoogle Scholar
  22. 22.
    Noisa P, Urrutikoetxea-Uriguen A, Li M, Cui W. Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev. 2010;6(3):438–49.  https://doi.org/10.1007/s12015-010-9159-9.CrossRefPubMedGoogle Scholar
  23. 23.
    Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95.  https://doi.org/10.1016/j.stem.2015.09.003.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    •• Larimer P, Spatazza J, Espinosa JS, Tang Y, Kaneko M, Hasenstaub AR, et al. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity. Cell Rep. 2016;16(5):1391–404.  https://doi.org/10.1016/j.celrep.2016.06.071 The authors demonstrate that not all neural precursor cells have equal capacity to induce neuroplasticity. Following transplantation, precursor cells from both the medial and caudal ganglionic emincences disperse throughout the brain and laminate appropriately as interneurons. The ability to induce ocular dominance plasticity is restricted to genetically specified “medial” precurors even if isolated anatomically from the caudal ganglionic eminence. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen L, Zhang G, Gu Y, Guo X. Meta-analysis and systematic review of neural stem cells therapy for experimental ischemia stroke in preclinical studies. Sci Rep. 2016;6:32291.  https://doi.org/10.1038/srep32291.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang H, Qian K, Han X, Li X, Zheng Y, Chen Z, et al. Intraparenchymal neural stem/progenitor cell transplantation for ischemic stroke animals: a meta-analysis and systematic review. Stem Cells Int. 2018;2018:4826407–10.  https://doi.org/10.1155/2018/4826407.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.  https://doi.org/10.1634/stemcells.2005-0342.CrossRefPubMedGoogle Scholar
  28. 28.
    Banerjee S, Williamson DA, Habib N, Chataway J. The potential benefit of stem cell therapy after stroke: an update. Vasc Health Risk Manag. 2012;8:569–80.  https://doi.org/10.2147/VHRM.S25745.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Greco SJ, Zhou C, Ye JH, Rameshwar P. An interdisciplinary approach and characterization of neuronal cells transdifferentiated from human mesenchymal stem cells. Stem Cells Dev. 2007;16(5):811–26.  https://doi.org/10.1089/scd.2007.0011.CrossRefPubMedGoogle Scholar
  30. 30.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56.  https://doi.org/10.1006/exnr.2000.7389.CrossRefPubMedGoogle Scholar
  31. 31.
    Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant. 2016;25(5):849–61.  https://doi.org/10.3727/096368916X690881.CrossRefPubMedGoogle Scholar
  32. 32.
    Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010;107(19):8639–43.  https://doi.org/10.1073/pnas.0911647107.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    • Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, et al. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PloS One. 2015;10(3):e0116009.  https://doi.org/10.1371/journal.pone.0116009 This study demonstrates possible independent effects and mechanisms for different subpopulations of bone marrow derived progenitors in stroke recovery. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.  https://doi.org/10.1182/blood-2004-04-1559.CrossRefPubMedGoogle Scholar
  35. 35.
    Hess DC, Hill WD. Cell therapy for ischaemic stroke. Cell Prolif. 2011;44(Suppl 1):1–8.  https://doi.org/10.1111/j.1365-2184.2010.00718.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Rosado-de-Castro PH, Schmidt Fda R, Battistella V. Lopes de Souza SA, Gutfilen B, Goldenberg RC et al. biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med. 2013;8(2):145–55.  https://doi.org/10.2217/rme.13.2.CrossRefPubMedGoogle Scholar
  37. 37.
    Jiang J, Wang Y, Liu B, Chen X, Zhang S. Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke. Brain Dev. 2018;40:612–26.  https://doi.org/10.1016/j.braindev.2018.03.015.CrossRefPubMedGoogle Scholar
  38. 38.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.  https://doi.org/10.1126/science.1151526.CrossRefPubMedGoogle Scholar
  39. 39.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.  https://doi.org/10.1016/j.cell.2007.11.019.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28(8):848–55.  https://doi.org/10.1038/nbt.1667.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Han X, Yu L, Ren J, Wang M, Liu Z, Hu X, et al. Efficient and fast differentiation of human neural stem cells from human embryonic stem cells for cell therapy. Stem Cells Int. 2017;2017:9405204–11.  https://doi.org/10.1155/2017/9405204.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Denham M, Dottori M. Neural differentiation of induced pluripotent stem cells. Methods Mol Biol. 2011;793:99–110.  https://doi.org/10.1007/978-1-61779-328-8_7.CrossRefPubMedGoogle Scholar
  43. 43.
    Marei HE, Hasan A, Rizzi R, Althani A, Afifi N, Cenciarelli C, et al. Potential of stem cell-based therapy for ischemic stroke. Front Neurol. 2018;9:34.  https://doi.org/10.3389/fneur.2018.00034.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kokaia Z, Llorente IL, Carmichael ST. Customized brain cells for stroke patients using pluripotent stem cells. Stroke. 2018;49(5):1091–8.  https://doi.org/10.1161/STROKEAHA.117.018291.CrossRefPubMedGoogle Scholar
  45. 45.
    • Kokaia Z, Tornero D, Lindvall O. Transplantation of reprogrammed neurons for improved recovery after stroke. Prog Brain Res. 2017;231:245–63.  https://doi.org/10.1016/bs.pbr.2016.11.013 The authors provide a comprehensive review of iPSC-derived precursors for stroke recovery. CrossRefPubMedGoogle Scholar
  46. 46.
    Chau MJ, Deveau TC, Song M, Gu X, Chen D, Wei L. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells. 2014;32(12):3075–87.  https://doi.org/10.1002/stem.1802.CrossRefPubMedGoogle Scholar
  47. 47.
    Oki K, Tatarishvili J, Wood J, Koch P, Wattananit S, Mine Y, et al. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells. 2012;30(6):1120–33.  https://doi.org/10.1002/stem.1104.CrossRefPubMedGoogle Scholar
  48. 48.
    Tornero D, Wattananit S, Gronning Madsen M, Koch P, Wood J, Tatarishvili J, et al. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain. 2013;136(Pt 12):3561–77.  https://doi.org/10.1093/brain/awt278.CrossRefPubMedGoogle Scholar
  49. 49.
    •• Tornero D, Tsupykov O, Granmo M, Rodriguez C, Gronning-Hansen M, Thelin J, et al. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain. 2017;140(3):692–706.  https://doi.org/10.1093/brain/aww347 The authors demonstrate that iPSC-derived cortically primed neurons engraft and receive direct synaptic inputs from host thalamic neurons. This occurs in a somatotopic fashion, and transplanted neurons can exhibit activation from physiological stimuli. CrossRefPubMedGoogle Scholar
  50. 50.
    Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135(3509):1127–8.CrossRefGoogle Scholar
  51. 51.
    Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science. 1977;197(4308):1092–4.CrossRefGoogle Scholar
  52. 52.
    Ihrie RA, Alvarez-Buylla A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron. 2011;70(4):674–86.  https://doi.org/10.1016/j.neuron.2011.05.004.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bonaguidi MA, Song J, Ming GL, Song H. A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol. 2012;22(5):754–61.  https://doi.org/10.1016/j.conb.2012.03.013.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rakic P. Limits of neurogenesis in primates. Science. 1985;227(4690):1054–6.CrossRefGoogle Scholar
  55. 55.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.  https://doi.org/10.1038/3305.CrossRefPubMedGoogle Scholar
  56. 56.
    Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson T, et al. Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A. 2006;103(33):12564–8.  https://doi.org/10.1073/pnas.0605177103.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    • Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C et al. Extensive migration of young neurons into the infant human frontal lobe. Science. 2016;354(6308):81–88. doi: https://doi.org/10.1126/science.aaf7073. This study demonstrates a previously unappreciated persistence of neurogenesis and migration in the postnatal human brain, albeit largely limited to infants.
  58. 58.
    Felling RJ, Snyder MJ, Romanko MJ, Rothstein RP, Ziegler AN, Yang Z, et al. Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J Neurosci. 2006;26(16):4359–69.  https://doi.org/10.1523/JNEUROSCI.1898-05.2006.CrossRefPubMedGoogle Scholar
  59. 59.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.  https://doi.org/10.1038/nm747.CrossRefPubMedGoogle Scholar
  60. 60.
    Plane JM, Liu R, Wang TW, Silverstein FS, Parent JM. Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis. 2004;16(3):585–95.  https://doi.org/10.1016/j.nbd.2004.04.003.CrossRefPubMedGoogle Scholar
  61. 61.
    Parent JM. The role of seizure-induced neurogenesis in epileptogenesis and brain repair. Epilepsy Res. 2002;50(1–2):179–89.CrossRefGoogle Scholar
  62. 62.
    Lindvall O, Kokaia Z. Neurogenesis following Stroke Affecting the Adult Brain. Cold Spring Harb Perspect Biol. 2015;7(11):1–19. doi: https://doi.org/10.1101/cshperspect.a019034.
  63. 63.
    Felling RJ, Levison SW. Enhanced neurogenesis following stroke. J Neurosci Res. 2003;73(3):277–83.  https://doi.org/10.1002/jnr.10670.CrossRefPubMedGoogle Scholar
  64. 64.
    Lagace DC. Does the endogenous neurogenic response alter behavioral recovery following stroke? Behav Brain Res. 2012;227(2):426–32.  https://doi.org/10.1016/j.bbr.2011.08.045.CrossRefPubMedGoogle Scholar
  65. 65.
    Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198–202.  https://doi.org/10.1073/pnas.0603512103.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, Martinez-Ramirez S, Jimenez-Xarrie E, Marin R, et al. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010;74(5):357–65.  https://doi.org/10.1212/WNL.0b013e3181cbccec.CrossRefPubMedGoogle Scholar
  67. 67.
    Lam J, Lowry WE, Carmichael ST, Segura T. Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Adv Funct Mater. 2014;24(44):7053–62.  https://doi.org/10.1002/adfm.201401483.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    George PM, Oh B, Dewi R, Hua T, Cai L, Levinson A, et al. Engineered stem cell mimics to enhance stroke recovery. Biomaterials. 2018;178:63–72.  https://doi.org/10.1016/j.biomaterials.2018.06.010.CrossRefPubMedGoogle Scholar
  69. 69.
    •• Cook DJ, Nguyen C, Chun HN, I LL, Chiu AS, Machnicki M, et al. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J Cereb Blood Flow Metab. 2017;37(3):1030–45.  https://doi.org/10.1177/0271678X16649964 This study demonstrates the potential for hydrogel scaffolds to promote endogenous repair mechanisms including neurogenesis. CrossRefPubMedGoogle Scholar
  70. 70.
    Moshayedi P, Nih LR, Llorente IL, Berg AR, Cinkornpumin J, Lowry WE, et al. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials. 2016;105:145–55.  https://doi.org/10.1016/j.biomaterials.2016.07.028.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Manley NC, Steinberg GK. Tracking stem cells for cellular therapy in stroke. Curr Pharm Des. 2012;18(25):3685–93.CrossRefGoogle Scholar
  72. 72.
    Walczak P, Wojtkiewicz J, Nowakowski A, Habich A, Holak P, Xu J, et al. Real-time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. J Cereb Blood Flow Metab. 2017;37(7):2346–58.  https://doi.org/10.1177/0271678X16665853.CrossRefPubMedGoogle Scholar
  73. 73.
    Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39(5):1569–74.  https://doi.org/10.1161/STROKEAHA.107.502047.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Janowski M, Walczak P, Kropiwnicki T, Jurkiewicz E, Domanska-Janik K, Bulte JW, et al. Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF. PLoS One. 2014;9(2):e97631.  https://doi.org/10.1371/journal.pone.0097631.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Janowski M, Wagner DC, Boltze J. Stem cell-based tissue replacement after stroke: factual necessity or notorious fiction? Stroke. 2015;46(8):2354–63.  https://doi.org/10.1161/STROKEAHA.114.007803.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 2016;13(4):661–70.  https://doi.org/10.1007/s13311-016-0483-x.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci. 2003;24(3):623–31.CrossRefGoogle Scholar
  78. 78.
    Erlandsson A, Lin CH, Yu F, Morshead CM. Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol. 2011;230(1):48–57.  https://doi.org/10.1016/j.expneurol.2010.05.018.CrossRefPubMedGoogle Scholar
  79. 79.
    Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158(3):1021–9.  https://doi.org/10.1016/j.neuroscience.2008.06.052.CrossRefPubMedGoogle Scholar
  80. 80.
    Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, et al. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia. 2009;57(8):835–49.  https://doi.org/10.1002/glia.20810.CrossRefPubMedGoogle Scholar
  81. 81.
    Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56–64.  https://doi.org/10.1038/nrneurol.2014.207.CrossRefPubMedGoogle Scholar
  82. 82.
    • Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–72.  https://doi.org/10.1016/j.pneurobio.2016.01.005 The authors nicely review the dual functions of inflammation, in particularly microglia, in mediating both stroke-related injury and repair. CrossRefPubMedGoogle Scholar
  83. 83.
    Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, et al. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A. 2008;105(38):14638–43.  https://doi.org/10.1073/pnas.0803670105.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Boshuizen MCS, Steinberg GK. Stem cell-based immunomodulation after stroke: effects on brain repair processes. Stroke. 2018;49(6):1563–70.  https://doi.org/10.1161/STROKEAHA.117.020465.CrossRefPubMedGoogle Scholar
  85. 85.
    •• Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(5):360–8.  https://doi.org/10.1016/S1474-4422(17)30046-7 This is one of the more extensive and rigorously designed trials of cell-based therapy. While efficacy outcomes were not significantly positive, the study demonstrates the feasibility of cell-based therapy in a very acute window utilizing an “off the shelf” cell product. CrossRefPubMedGoogle Scholar
  86. 86.
    Yang B, Hamilton JA, Valenzuela KS, Bogaerts A, Xi X, Aronowski J, et al. Multipotent adult progenitor cells enhance recovery after stroke by modulating the immune response from the spleen. Stem Cells. 2017;35(5):1290–302.  https://doi.org/10.1002/stem.2600.CrossRefPubMedGoogle Scholar
  87. 87.
    Yang B, Li W, Satani N, Nghiem DM, Xi X, Aronowski J, et al. Protective effects of autologous bone marrow mononuclear cells after administering t-PA in an embolic stroke model. Transl Stroke Res. 2018;9(2):135–45.  https://doi.org/10.1007/s12975-017-0563-1.CrossRefPubMedGoogle Scholar
  88. 88.
    Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol. 2017;158:94–131.  https://doi.org/10.1016/j.pneurobio.2017.07.004.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.  https://doi.org/10.1038/nrn2735.CrossRefPubMedGoogle Scholar
  90. 90.
    Carmichael ST, Chesselet MF. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(14):6062–70 doi:20026605.CrossRefGoogle Scholar
  91. 91.
    Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25(44):10167–79.  https://doi.org/10.1523/JNEUROSCI.3256-05.2005.CrossRefPubMedGoogle Scholar
  92. 92.
    Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci. 2009;29(6):1719–34.  https://doi.org/10.1523/JNEUROSCI.4249-08.2009.CrossRefPubMedGoogle Scholar
  93. 93.
    Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci. 1994;14(4):2140–52.CrossRefGoogle Scholar
  94. 94.
    Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci. 2001;21(14):5272–80.CrossRefGoogle Scholar
  95. 95.
    Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res. 2006;84(7):1495–504.  https://doi.org/10.1002/jnr.21056.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55.  https://doi.org/10.1016/j.expneurol.2008.11.010.CrossRefPubMedGoogle Scholar
  97. 97.
    Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129(Pt 10):2734–45.  https://doi.org/10.1093/brain/awl207.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.  https://doi.org/10.1016/j.neuroscience.2005.06.062.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci. 2013;70(20):3871–82.  https://doi.org/10.1007/s00018-013-1290-8.CrossRefPubMedGoogle Scholar
  100. 100.
    Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14(1):7–23.  https://doi.org/10.1038/nrn3379.CrossRefPubMedGoogle Scholar
  101. 101.
    Cramer SC, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci. 2000;23(6):265–71.CrossRefGoogle Scholar
  102. 102.
    • Zhang ZG, Chopp M. Exosomes in stroke pathogenesis and therapy. J Clin Investig. 2016;126(4):1190–7.  https://doi.org/10.1172/JCI81133 Excellent review about a exosomes, and emerging field related to stem cells but beyond the scope of this current review. CrossRefPubMedGoogle Scholar
  103. 103.
    Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One. 2013;8(8):e72604.  https://doi.org/10.1371/journal.pone.0072604.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sheikh AM, Yano S, Mitaki S, Haque MA, Yamaguchi S, Nagai A. A mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol. 2018;311:182–93.  https://doi.org/10.1016/j.expneurol.2018.10.001.CrossRefPubMedGoogle Scholar
  105. 105.
    Jin K, Xie L, Mao X, Greenberg MB, Moore A, Peng B, et al. Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Res. 2011;1374:56–62.  https://doi.org/10.1016/j.brainres.2010.12.037.CrossRefPubMedGoogle Scholar
  106. 106.
    Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134(Pt 6):1777–89.  https://doi.org/10.1093/brain/awr094.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke. 2008;39(10):2837–44.  https://doi.org/10.1161/STROKEAHA.107.510982.CrossRefPubMedGoogle Scholar
  108. 108.
    Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag AL, et al. Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant. 2009;18(7):815–26.  https://doi.org/10.3727/096368909X470829.CrossRefPubMedGoogle Scholar
  109. 109.
    Martinez-Cerdeno V, Noctor SC, Espinosa A, Ariza J, Parker P, Orasji S, et al. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. Cell Stem Cell. 2010;6(3):238–50.  https://doi.org/10.1016/j.stem.2010.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Zhang R, Chopp M, Zhang ZG. Oligodendrogenesis after cerebral ischemia. Front Cell Neurosci. 2013;7:201.  https://doi.org/10.3389/fncel.2013.00201.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci. 2018;21(1):9–15.  https://doi.org/10.1038/s41593-017-0033-9.CrossRefPubMedGoogle Scholar
  112. 112.
    Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia. 2014;62(1):1–16.  https://doi.org/10.1002/glia.22585.CrossRefPubMedGoogle Scholar
  113. 113.
    Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55(4):565–9.CrossRefGoogle Scholar
  114. 114.
    Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005;103(1):38–45.  https://doi.org/10.3171/jns.2005.103.1.0038.CrossRefPubMedGoogle Scholar
  115. 115.
    Rabinovich SS, Seledtsov VI, Banul NV, Poveshchenko OV, Senyukov VV, Astrakov SV, et al. Cell therapy of brain stroke. Bull Exp Biol Med. 2005;139(1):126–8.CrossRefGoogle Scholar
  116. 116.
    Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis. 2005;20(2):101–7.  https://doi.org/10.1159/000086518.CrossRefPubMedGoogle Scholar
  117. 117.
    Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82.  https://doi.org/10.1002/ana.20501.CrossRefPubMedGoogle Scholar
  118. 118.
    Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L, et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27(3):151–61.  https://doi.org/10.3233/RNN-2009-0483.CrossRefPubMedGoogle Scholar
  119. 119.
    Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.  https://doi.org/10.1002/stem.430.CrossRefPubMedGoogle Scholar
  120. 120.
    Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70(1):59–69.  https://doi.org/10.1002/ana.22458.CrossRefPubMedGoogle Scholar
  121. 121.
    Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790–807.  https://doi.org/10.1093/brain/awr063.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Friedrich MA, Martins MP, Araujo MD, Klamt C, Vedolin L, Garicochea B, et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012;21(Suppl 1):S13–21.  https://doi.org/10.3727/096368912X612512.CrossRefPubMedGoogle Scholar
  123. 123.
    Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43(8):2242–4.  https://doi.org/10.1161/STROKEAHA.112.659409.CrossRefPubMedGoogle Scholar
  124. 124.
    Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, et al. Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra. 2011;1(1):93–104.  https://doi.org/10.1159/000333381.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Bhasin A, Srivastava M, Bhatia R, Mohanty S, Kumaran S, Bose S. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J Stem Cells Regen Med. 2012;8(3):181–9.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Bhasin A, Srivastava MV, Mohanty S, Bhatia R, Kumaran SS, Bose S. Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):1003–8.  https://doi.org/10.1016/j.clineuro.2012.10.015.CrossRefPubMedGoogle Scholar
  127. 127.
    Bhasin A, Kumaran SS, Bhatia R, Mohanty S, Srivastava MVP. Safety and feasibility of autologous mesenchymal stem cell transplantation in chronic stroke in Indian patients. A four-year follow up. J Stem Cells Regen Med. 2017;13(1):14–9.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Wang L, Ji H, Li M, Zhou J, Bai W, Zhong Z, et al. Intrathecal Administration of Autologous CD34 positive cells in patients with past cerebral infarction: a safety study. ISRN Neurol. 2013;2013:128591–6.  https://doi.org/10.1155/2013/128591.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24.  https://doi.org/10.1161/STROKEAHA.114.007028.CrossRefPubMedGoogle Scholar
  130. 130.
    Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016;388(10046):787–96.  https://doi.org/10.1016/S0140-6736(16)30513-X.CrossRefPubMedGoogle Scholar
  131. 131.
    •• Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, et al. Clinical Outcomes of Transplanted Modified Bone Marrow-Derived Mesenchymal Stem Cells in Stroke: A Phase 1/2a Study. Stroke; a journal of cerebral circulation. 2016;47(7):1817–24.  https://doi.org/10.1161/STROKEAHA.116.012995 While interpretation is limited by the design as an uncontrolled study, this trial demonstrated clinically significant improvements in chronic stroke patients following stem cell transplantation. CrossRefGoogle Scholar
  132. 132.
    Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.  https://doi.org/10.1136/bmj.328.7454.1490.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Thomas RJ, Hope AD, Hourd P, Baradez M, Miljan EA, Sinden JD, et al. Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line. Biotechnol Lett. 2009;31(8):1167–72.  https://doi.org/10.1007/s10529-009-9989-1.CrossRefPubMedGoogle Scholar
  134. 134.
    Stevanato L, Corteling RL, Stroemer P, Hope A, Heward J, Miljan EA, et al. c-MycERTAM transgene silencing in a genetically modified human neural stem cell line implanted into MCAo rodent brain. BMC Neurosci. 2009;10:86.  https://doi.org/10.1186/1471-2202-10-86.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Gaudinski MR, Henning EC, Miracle A, Luby M, Warach S, Latour LL. Establishing final infarct volume: stroke lesion evolution past 30 days is insignificant. Stroke. 2008;39(10):2765–8.  https://doi.org/10.1161/STROKEAHA.107.512269.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Savitz SI, Chopp M, Deans R, Carmichael T, Phinney D, Wechsler L, et al. Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke. 2011;42(3):825–9.  https://doi.org/10.1161/STROKEAHA.110.601914.CrossRefPubMedGoogle Scholar
  137. 137.
    •• Savitz SI, Cramer SC, Wechsler L, Consortium S. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke. 2014;45(2):634–9.  https://doi.org/10.1161/STROKEAHA.113.003379 Consensus guidelines from the STEPS consortiums outlining best practices moving forward in the design of clinical trials for cell-based therapies. These guidelines are essential to ensure the quality of trials and the continued generation of mechanistic knowledge in the trial setting so that therapies can be refined and optimized based on clinical results. CrossRefPubMedGoogle Scholar
  138. 138.
    Stem Cell Therapies as an Emerging Paradigm in Stroke P. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke. 2009;40(2):510–5.  https://doi.org/10.1161/STROKEAHA.108.526863.CrossRefGoogle Scholar
  139. 139.
    Bernstock JD, Peruzzotti-Jametti L, Ye D, Gessler FA, Maric D, Vicario N, et al. Neural stem cell transplantation in ischemic stroke: a role for preconditioning and cellular engineering. J Cereb Blood Flow Metab. 2017;37(7):2314–9.  https://doi.org/10.1177/0271678X17700432.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Chan SJ, Love C, Spector M, Cool SM, Nurcombe V, Lo EH. Endogenous regeneration: engineering growth factors for stroke. Neurochem Int. 2017;107:57–65.  https://doi.org/10.1016/j.neuint.2017.03.024.CrossRefPubMedGoogle Scholar
  141. 141.
    Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557(7705):335–42.  https://doi.org/10.1038/s41586-018-0089-z.CrossRefPubMedGoogle Scholar
  142. 142.
    •• Krakauer JW, Marshall RS. The proportional recovery rule for stroke revisited. Ann Neurol. 2015;78(6):845–7.  https://doi.org/10.1002/ana.24537 Summarizes the concept of proportional recovery and discusses two studies which predict who may or may not follow this rule, providing a benchmark for expected spontaneous recovery against which stem cell therapies may be compared. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ania Dabrowski
    • 1
  • Thomas J. Robinson
    • 1
  • Ryan J. Felling
    • 1
    Email author
  1. 1.Department of NeurologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations