Advertisement

Pharmacokinetic Considerations with the Use of Antiepileptic Drugs in Patients with HIV and Organ Transplants

  • Jorge J. Asconapé
Neurology of Systemic Diseases (J Biller, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neurology of Systemic Disease

Abstract

Purpose of Review

Antiepileptic drugs are frequently administered to patients with HIV infection or in recipients of organ transplants. The potentially serious drug-drug interactions between the “classic” antiepileptic drugs, antiretrovirals, and immunosuppressants have been extensively studied. Evidence-based information on the second and third generation of antiepileptic drugs is almost non-existent. The purpose of this review is to analyze the pharmacokinetic profile of these newer agents to assess their potential for drug interactions with antiretrovirals and immunosuppressants.

Recent Findings

As a group, the newer generations of antiepileptic drugs have shown a more favorable drug interaction potential compared to the “classic” ones. A group of moderate enzyme-inducing drugs includes eslicarbazepine acetate, oxcarbazepine, rufinamide, and topiramate. These drugs are not as potent inducers as the “classic” drugs but may potentially decrease the serum concentrations of some antiretrovirals and immunosuppressants. Antiepileptic drugs with no or minimal enzyme-inducing properties include brivaracetam, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, and vigabatrin.

Summary

The newer generations of antiepileptic drugs have expanded the therapeutic options in patients with HIV infection or organ transplants.

Keywords

Antiepileptic drugs Antiretroviral Immunosuppressive agents Epilepsy HIV Organ transplant 

Notes

Compliance with Ethical Standards

Conflict of Interest

Jorge J. Asconapé reports personal fees from UCB Pharma, personal fees from Eisai, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kellinghaus C, Engbring C, Kovac S, Möddel G, Boesebeck F, Fischera F, et al. Frequency of seizures and epilepsy in neurological HIV-infected patients. Seizure. 2008;17(1):27–33.  https://doi.org/10.1016/j.seizure.2007.05.017.CrossRefPubMedGoogle Scholar
  2. 2.
    Holtzman DM, Kaku DA, So YT. New-onset seizures associated with human immunodeficiency virus infection: causation and clinical features in 100 cases. Am J Med. 1989;87(2):173–7.  https://doi.org/10.1016/S0002-9343(89)80693-X.CrossRefPubMedGoogle Scholar
  3. 3.
    Wong MC, Suite ND, Labar DR. Seizures in human immunodeficiency virus infection. Arch Neurol. 1990;47(6):640–2.  https://doi.org/10.1001/archneur.1990.00530060048015.CrossRefPubMedGoogle Scholar
  4. 4.
    Verma S, Estanislao L, Simpson D. HIV-associated neuropathic pain: epidemiology, pathophysiology and management. CNS Drugs. 2005;19(4):324–34.  https://doi.org/10.2165/00023210-200519040-00005.CrossRefGoogle Scholar
  5. 5.
    Cruess DG, Evans DL, Repetto MJ, Gettes D, Douglas SD, Petitto JM. Prevalence, diagnosis, and pharmacological treatment of mood disorders in HIV disease. Biol Psychiatry. 2003;54(3):307–16.  https://doi.org/10.1016/S0006-3223(03)00318-4.CrossRefPubMedGoogle Scholar
  6. 6.
    Shepard PW, EK SL. Seizure treatment in transplant patients. Curr Treat Options Neurol. 2012;14(4):332–47.  https://doi.org/10.1007/s11940-012-0180-y.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Glass GA, Stankiewicz J, Mithoefer A, Freeman R, Bergethon PR. Levetiracetam for seizures after liver transplantation. Neurology. 2005;64:1084–5.  https://doi.org/10.1212/01.WNL.0000154598.03596.40.CrossRefPubMedGoogle Scholar
  8. 8.
    Senzolo M, Ferronato C, Burra P. Neurologic complications after solid organ transplantation. Transpl Int. 2009;22(3):269–78.  https://doi.org/10.1111/j.1432.2277.2008.00780.x.CrossRefPubMedGoogle Scholar
  9. 9.
    • Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ, Schmidt D. Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia. 2013;54(1):11–27.  https://doi.org/10.1111/j.1528-1167.2012.03671 Excellent review of drug-induced enzymatic induction and its clinical implications. CrossRefPubMedGoogle Scholar
  10. 10.
    Barry M, Mulcahy F, Merry C, Gibbons S, Back D. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet. 1999;36(4):289–304.  https://doi.org/10.2165/00003088-199936040-00004.CrossRefPubMedGoogle Scholar
  11. 11.
    Hoetelmans RM, Burger DM, Meenhorst PL, Beijnen JH. Pharmacokinetic individualization of zidovudine therapy. Current state of pharmacokinetic-pharmacodynamic interactions. Clin Pharmacokinet. 1996;30:314–27.CrossRefGoogle Scholar
  12. 12.
    Izzedine H, Launay-Vacher V, Baumelou A, Deray G. Antiretroviral and immunosuppressive drug-drug interactions: an update. Kidney Int. 2004;66:532–49.  https://doi.org/10.1111/j.1523-1755.2004.00772.x.CrossRefPubMedGoogle Scholar
  13. 13.
    Okulicz JF, Grandits GA, French JA, George JM, Simpson DM, Birbeck GL, et al. Virologic outcomes of HAART with concurrent use of cytochrome P450 enzyme-inducing antiepileptics: a retrospective case control study. AIDS Res Ther. 2011;8:18.  https://doi.org/10.1186/1742-6405-8-18.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Okulicz JF, Grandits GA, French JA, Perucca E, George JM, Landrum ML, et al. The impact of enzyme-inducing antiepileptic drugs on antiretroviral drugs: a case-control study. Epilepsy Res. 2013;103(2–3):245–53.  https://doi.org/10.1016/j.eplepsyres.2012.07.009.CrossRefPubMedGoogle Scholar
  15. 15.
    •• Birbeck HL, French JA, Perucca E, Simpson DM, Fraimow H, George JM, et al. Evidence-based guideline: antiepileptic drug selection for people with HIV/AIDS. Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Ad Hoc Task Force of the Commission on Therapeutic Strategies of the International League Against Epilepsy. Neurology. 2012;78:139–45.  https://doi.org/10.1212/WNL.0b013e31823efcf8 An evidence-based guideline with an extensive review of the literature until 2012. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lim ML, Min SS, Eron JJ, Bertz RJ, Robinson M, Gaedigk A, et al. Coadministration of lopinavir/ritonavir and phenytoin results in a two-way drug interaction through cytochrome P-450 induction. J Acquir Immune Defic Syndr. 2004;36:1034–40.CrossRefGoogle Scholar
  17. 17.
    DiCenzo R, Peterson D, Cruttenden K, Morse G, Riggs G, Gelbard H, et al. Effects of valproic acid coadministration on plasma efavirenz and lopinavir concentrations in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother. 2004;48(11):4328–31.CrossRefGoogle Scholar
  18. 18.
    Lertora JJ, Rege AB, Greenspan DL, Akula S, George WJ, Hyslop NE Jr, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther. 1994;56(3):272–8.CrossRefGoogle Scholar
  19. 19.
    Palazzo A, Trunfio M, Pirriatore V, Milesi M, De Nicolo A, Alcantarini C, et al. Lower dolutegravir plasma concentrations in HIV-positive patients receiving valproic acid. J Antimicrob Chemother. 2017.  https://doi.org/10.1093/jac/dkx461.CrossRefGoogle Scholar
  20. 20.
    Moog C, Kuntz-Simon G, Caussin-Schwemling C, Obert G. Sodium valproate, an anticonvulsant drug, stimulates human immunodeficiency virus type 1 replication independently of glutathione levels. J Gen Virol. 1996;77(Pt 9):1993–9.CrossRefGoogle Scholar
  21. 21.
    Witvrouw M, Schmit JC, Van Remoortel B, Daelemans D, Esté JA, Vandamme AM, et al. Cell type-dependent effect of sodium valproate on human immunodeficiency virus type 1 replication in vitro. AIDS Res Hum Retrovir. 1997;13(2):187–92.  https://doi.org/10.1089/aid.1997.13.187.CrossRefPubMedGoogle Scholar
  22. 22.
    Sagot-Lerolle N, Lamine A, Chaix ML, Boufassa F, Aboulker JP, Costagliola D, et al. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS. 2008;22(10):1125–9.  https://doi.org/10.1097/QAD.0b013e3282fd6ddc.CrossRefPubMedGoogle Scholar
  23. 23.
    Yacoob Y, Bhigjee AI, Moodley P, Parboosing R. Sodium valproate and highly active antiretroviral therapy in HIV positive patients who develop new onset seizures. Seizure. 2011;20(1):80–2.  https://doi.org/10.1016/j.seizure.2010.09.009.CrossRefPubMedGoogle Scholar
  24. 24.
    Ye J, Li J, Zhou M, Xia R, Liu R, Yu L. Modulation of donor-specific antibody production after organ transplantation by valproic acid: a histone deacetylase inhibitor. Transplantation. 2016;100(11):2342–51.  https://doi.org/10.1097/TP.0000000000001097.CrossRefPubMedGoogle Scholar
  25. 25.
    Annapandian VM, John GT, Mathew BS, Fleming DH. Pharmacokinetic interaction between sodium valproate and mycophenolate in renal allograft recipients. Transplantation. 2009;88(9):1143–5.  https://doi.org/10.1097/TP.0b013e3181bb99ff.CrossRefPubMedGoogle Scholar
  26. 26.
    Burger DM, Huisman A, Van Ewijk N, Neisingh H, Van Uden P, Rongen GA, et al. The effect of atazanavir and atazanavir/ritonavir on UDP-glucuronosyltransferase using lamotrigine as a phenotypic probe. Clin Pharmacol Ther. 2008;84:698–703.  https://doi.org/10.1038/clpt.2008.106.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaf-Teulen MJA, van Ewijk-Beneken Kolmer EWJ, Caliskan-Yassen N, et al. Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2006;80(2):159–68.  https://doi.org/10.1016/j.clpt.2006.04.014.CrossRefGoogle Scholar
  28. 28.
    van Luin M, Colbers A, Verwey-van Wissen CP, van Ewijk-Beneken-Kolmer EW, van der Kolk M, Hoitsma A, et al. The effect of raltegravir on the glucuronidation of lamotrigine. J Clin Pharmacol. 2009;49(10):1220–7.  https://doi.org/10.1177/0091270009345689.CrossRefGoogle Scholar
  29. 29.
    Sachdeo RC, Sachdeo SK, Levy RH, Streeter AJ, Bishop FE, Kunze KL, et al. Topiramate and phenytoin pharmacokinetics during repetitive monotherapy and combination therapy to epileptic patients. Epilepsia. 2002;43(7):691–6.CrossRefGoogle Scholar
  30. 30.
    Klein P, Diaz A, Gasalla T, Whitesides J. A review of the pharmacology and clinical efficacy of brivaracetam. Clin Pharmacol. 2018;10:1–22.  https://doi.org/10.2147/CPAA.S114072.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rolan P, Sargentini-Maier ML, Pigeolet E, Stockis A. The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after multiple increasing oral doses in healthy men. Br J Clin Pharmacol. 2008;66(1):71–5.  https://doi.org/10.1111/j.1365-2125.2008.03158.x.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bialer M, Soares-da-Silva P. Pharmacokinetics and drug interactions of eslicarbazepine acetate. Epilepsia. 2012;53(6):935–46.  https://doi.org/10.1111/j.1528-1167.2012.03519.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Cawello W, Boekens H, Bonn R. Absorption, disposition, metabolic fate and elimination of the anti-epileptic drug lacosamide in humans: mass balance following intravenous and oral administration. Eur J Drug Metab Pharmacokinet. 2012;37(4):241–8.  https://doi.org/10.1007/s13318-012-0093-x.CrossRefPubMedGoogle Scholar
  34. 34.
    Cawello W, Mueller-Voessing C, Fichtner A. Pharmacokinetics of lacosamide and omeprazole coadministration in healthy volunteers: results from a phase I, randomized, cross-over trial. Clin Drug Investig. 2014;34(5):317–25.  https://doi.org/10.1007/s40261-014-0177-2.CrossRefPubMedGoogle Scholar
  35. 35.
    Hanada T, Hashizume Y, Tokuhara N, Takenak O, Kohmura N, Ogasawara A, et al. Perampanel: a novel, orally active, noncompetitive AMPS-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia. 2011;52:1331–40.  https://doi.org/10.1111/j.1528-1167.2011.03109.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Franco V, Crema F, Iudice A, Zaccara G, Grillo E. Novel treatment options for epilepsy: focus on perampanel. Pharmacol Res. 2013;70:35–40.  https://doi.org/10.1016/j.phrs.2012.12.006.CrossRefPubMedGoogle Scholar
  37. 37.
    Majid O, Laurenza A, Ferry J, Hussein Z. Impact of perampanel on pharmacokinetics of concomitant antiepileptics in patients with partial-onset seizures: pooled analysis of clinical trials. Br J Clin Pharmacol. 2016;82(2):422–30.  https://doi.org/10.1111/bcp.12951.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gidal B, Maganti R, Laurenza A, Yang H, Verbel DA, Schuck E, et al. Effect of enzyme inhibition on perampanel pharmacokinetics: why study design matters. Epilepsy Res. 2017;134:41–8.  https://doi.org/10.1016/jeplepsyres.2017.04.018.CrossRefPubMedGoogle Scholar
  39. 39.
    Brodie MJ, Wilson EA, Wesche DL, Alvey CW, Randinitis EJ, Posvar EL, et al. Pregabalin drug interaction studies: lack of effect on the pharmacokinetics of carbamazepine, phenytoin, lamotrigine, and valproate in patients with partial epilepsy. Epilepsia. 2005;46(9):1407–13.  https://doi.org/10.1111/j.1528-1167.2005.19204.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Wheless JW, Vazquez B. Rufinamide: a novel broad spectrum antiepileptic drug. Epilepsy Curr. 2010;10(1):1–6.  https://doi.org/10.1111/j.1535=7511.2009.01336.x.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    • HIV Drug Interactions. University of Liverpool. http://www.hiv-druginteractions.org. An excellent comprehensive, up-to-date, evidence-based drug-drug interaction resource.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology, Stritch School of MedicineLoyola University ChicagoMaywoodUSA

Personalised recommendations