Advertisement

Cannabis for the Treatment of Epilepsy: an Update

  • Tyler E. Gaston
  • Jerzy P. Szaflarski
Epilepsy (C Bazil, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Epilepsy

Abstract

Purpose of Review

For millennia, there has been interest in the use of cannabis for the treatment of epilepsy. However, it is only recently that appropriately powered controlled studies have been completed. In this review, we present an update on the research investigating the use of cannabidiol (CBD), a non-psychoactive component of cannabis, in the treatment of epilepsy.

Recent Findings

While the anticonvulsant mechanism of action of CBD has not been entirely elucidated, we discuss the most recent data available including its low affinity for the endocannabinoid receptors and possible indirect modulation of these receptors via blocking the breakdown of anandamide. Additional targets include activation of the transient receptor potential of vanilloid type-1 (TRPV1), antagonist action at GPR55, targeting of abnormal sodium channels, blocking of T-type calcium channels, modulation of adenosine receptors, modulation of voltage-dependent anion selective channel protein (VDAC1), and modulation of tumor necrosis factor alpha release. We also discuss the most recent studies on various artisanal CBD products conducted in patients with epilepsy in the USA and internationally. While a high percentage of patients in these studies reported improvement in seizures, these studies were either retrospective or conducted via survey. Dosage/preparation of CBD was either unknown or not controlled in the majority of these studies. Finally, we present data from both open-label expanded access programs (EAPs) and randomized placebo-controlled trials (RCTs) of a highly purified oral preparation of CBD, which was recently approved by the FDA in the treatment of epilepsy. In the EAPs, there was a significant improvement in seizure frequency seen in a large number of patients with various types of treatment-refractory epilepsy. The RCTs have shown significant seizure reduction compared to placebo in patients with Dravet syndrome and Lennox-Gastaut syndrome. Finally, we describe the available data on adverse effects and drug-drug interactions with highly purified CBD. While this product is overall well tolerated, the most common side effects are diarrhea and sedation, with sedation being much more common in patients taking concomitant clobazam. There was also an increased incidence of aspartate aminotransferase and alanine aminotransferase elevations while taking CBD, with many of the patients with these abnormalities also taking concomitant valproate. CBD has a clear interaction with clobazam, significantly increasing the levels of its active metabolite N-desmethylclobazam in several studies; this is felt to be due to CBD’s inhibition of CYP2C19. EAP data demonstrate other possible interactions with rufinamide, zonisamide, topiramate, and eslicarbazepine. Additionally, there is one case report demonstrating need for warfarin dose adjustment with concomitant CBD.

Summary

Understanding of CBD’s efficacy and safety in the treatment of TRE has expanded significantly in the last few years. Future controlled studies of various ratios of CBD and THC are needed as there could be further therapeutic potential of these compounds for patients with epilepsy.

Keywords

Epilepsy Lennox-Gastaut syndrome Dravet syndrome Cannabis Cannabidiol Tetrahydrocannabinol Interactions Mechanism of action Efficacy 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Szaflarski reports personal fees from GW Pharmaceuticals; grants and personal fees from Serina Therapeutics, Inc., during the conduct of the study; personal fees from SK Life Sciences; personal fees from LivaNova Inc.; personal fees from Lundbeck; personal fees from NeuroPace Inc.; personal fees from Upsher-Smith Laboratories, Inc.; grants and personal fees from SAGE Pharmaceuticals; grants from UCB Pharma; grants from Biogen; and grants from Eisai Inc., outside the submitted work.

Dr. Gaston reports personal fees from GW Pharmaceuticals, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Maa E, Figi P. The case for medical marijuana in epilepsy. Epilepsia. 2014;55:783–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Szaflarski JP, Bebin EM. Cannabis, cannabidiol, and epilepsy--from receptors to clinical response. Epilepsy Behav. 2014;41:277–82.CrossRefPubMedGoogle Scholar
  3. 3.
    Gaston TE, Friedman D. Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy Behav. 2017;70:313–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Pertwee RG, Cascio MG. Known pharmacological actions of delta-9-tetrahydrocannabinol and of four other chemical constituents of cannabis that activate cannabinoid receptors. In: Pertwee RG, editor. Handbook of cannabis. Oxford: Oxford University Press; 2014. p. 115.CrossRefGoogle Scholar
  5. 5.
    Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199–215.CrossRefGoogle Scholar
  6. 6.
    Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther. 2003;307:129–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Wallace MJ, Martin BR, DeLorenzo RJ. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol. 2002;452:295–301.CrossRefPubMedGoogle Scholar
  8. 8.
    Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol. 2001;428:51–7.CrossRefPubMedGoogle Scholar
  9. 9.
    McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Delta(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol. 2015;172:737–53.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perucca E. Cannabinoids in the treatment of epilepsy: hard evidence at last? J Epilepsy Res. 2017;7:61–76.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG. Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol. 2007;150:613–23.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bisogno T, Hanus L, De Petrocellis L, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134:845–52.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    • Cleeren E, Casteels C, Goffin K, et al. Positron emission tomography imaging of cerebral glucose metabolism and type 1 cannabinoid receptor availability during temporal lobe epileptogenesis in the amygdala kindling model in rhesus monkeys. Epilepsia. 2018;59:959–70. This study documents the relationship between epileptogenesis and endocannabinoid system through all stages of epilepsy development. CrossRefPubMedGoogle Scholar
  14. 14.
    Szaflarski J. The highs and lows of the endocannabinoid system – Another piece to the epilepsy puzzle? Epilepsy Curr. 2018;in print.Google Scholar
  15. 15.
    Vilela LR, Lima IV, Kunsch EB, Pinto HPP, de Miranda AS, Vieira ÉLM, et al. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav. 2017;75:29–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Naziroglu M. TRPV1 channel: a potential drug target for treating epilepsy. Curr Neuropharmacol. 2015;13:239–47.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ryberg E, Larsson N, Sjogren S, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152:1092–101.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hurst K, Badgley C, Ellsworth T, Bell S, Friend L, Prince B, et al. A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus. 2017;27:985–98.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A. 2017;114:11229–34.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain J Neurol. 2016;139:2164–81.CrossRefGoogle Scholar
  21. 21.
    Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem. 2008;283:16124–34.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    During MJ, Spencer DD. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol. 1992;32:618–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Rimmerman N, Ben-Hail D, Porat Z, Juknat A, Kozela E, Daniels MP, et al. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death Dis. 2013;4:e949.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kozela E, Juknat A, Vogel Z. Modulation of astrocyte activity by cannabidiol, a nonpsychoactive cannabinoid. Int J Mol Sci. 2017;18CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Pelz MC, Schoolcraft KD, Larson C, Spring MG, Lopez HH. Assessing the role of serotonergic receptors in cannabidiol’s anticonvulsant efficacy. Epilepsy Behav. 2017;73:111–8.CrossRefPubMedGoogle Scholar
  27. 27.
    • Sulak D, Saneto R, Goldstein B. The current status of artisanal cannabis for the treatment of epilepsy in the United States. Epilepsy Behav. 2017;70:328–33. While open label, this study discusses various aspects of treating epilepsy with artisanal cannabis products in various settings. CrossRefPubMedGoogle Scholar
  28. 28.
    Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav. 2015;45:49–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Hussain SA, Zhou R, Jacobson C, Weng J, Cheng E, Lay J, et al. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: a potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy Behav. 2015;47:138–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Tzadok M, Uliel-Siboni S, Linder I, Kramer U, Epstein O, Menascu S, et al. CBD-enriched medical cannabis for intractable pediatric epilepsy: the current Israeli experience. Seizure. 2016;35:41–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Hausman-Kedem M, Menascu S, Kramer U. Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents - an observational, longitudinal study. Brain and Development. 2018;40:544–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Suraev AS, Todd L, Bowen MT, Allsop DJ, McGregor IS, Ireland C, et al. An Australian nationwide survey on medicinal cannabis use for epilepsy: history of antiepileptic drug treatment predicts medicinal cannabis use. Epilepsy Behav. 2017;70:334–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Suraev A, Lintzeris N, Stuart J, Kevin RC, Blackburn R, Richards E, et al. Composition and use of cannabis extracts for childhood epilepsy in the Australian community. Sci Rep. 2018;8:10154.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 2016;15:270–8.CrossRefPubMedGoogle Scholar
  35. 35.
    • Szaflarski JP, Bebin EM, Comi AM, et al. Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: Expanded access program results. Epilepsia 2018;59:1540–1548. This open-label study documents the sustained response to cannabidiol over the duration of exposure. CrossRefPubMedGoogle Scholar
  36. 36.
    Szaflarski JP, Bebin E, Cutter GR, et al. Cannabidiol improves seizure frequency and severity and reduces adverse events in an open-label prospective study. Epilepsy Behav. 2018; Accepted; In Press.Google Scholar
  37. 37.
    Hess EJ, Moody KA, Geffrey AL, Pollack SF, Skirvin LA, Bruno PL, et al. Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia. 2016;57:1617–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Devinsky O, Verducci C, Thiele EA, Laux LC, Patel AD, Filloux F, et al. Open-label use of Highly* purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav. 2018;86:131–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Gofshteyn JS, Wilfong A, Devinsky O, Bluvstein J, Charuta J, Ciliberto MA, et al. Cannabidiol as a potential treatment for febrile infection-related epilepsy syndrome (FIRES) in the acute and chronic phases. J Child Neurol. 2017;32:35–40.CrossRefPubMedGoogle Scholar
  40. 40.
    McCoy B, Wang L, Zak M, et al. A prospective open-label trial of CBD/THC cannabis oil in Dravet syndrome. Ann Clin Transl Neurol. in print.Google Scholar
  41. 41.
    Gloss D, Vickrey B. Cannabinoids for epilepsy. Cochrane Database Syst Rev. 2014;3:CD009270.Google Scholar
  42. 42.
    Devinsky O, Patel AD, Thiele EA, Wong MH, Appleton R, Harden CL, et al. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90:e1204–11.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    • Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the Lennox-Gastaut syndrome. N Engl J Med. 2018;378:1888–97. RCT of cannabidiol for the treatment of seizures associated with Lennox-Gastaut syndrome CrossRefPubMedGoogle Scholar
  44. 44.
    Espay AJ, Norris MM, Eliassen JC, Dwivedi A, Smith MS, Banks C, et al. Placebo effect of medication cost in Parkinson disease: a randomized double-blind study. Neurology. 2015;84:794–802.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vandrey R, Raber JC, Raber ME, Douglass B, Miller C, Bonn-Miller MO. Cannabinoid dose and label accuracy in edible medical cannabis products. Jama. 2015;313:2491–3.CrossRefPubMedGoogle Scholar
  46. 46.
    • Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376:2011–20. RCT of cannabidiol for the treatment of seizures associated with Dravet syndrome. CrossRefPubMedGoogle Scholar
  47. 47.
    • Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391:1085–96. RCT of cannabidiol for the treatment of seizures associated with Lennox-Gastaut syndrome. CrossRefPubMedGoogle Scholar
  48. 48.
    Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56:1246–51.CrossRefPubMedGoogle Scholar
  49. 49.
    Jiang R, Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet. 2013;28:332–8.CrossRefPubMedGoogle Scholar
  50. 50.
    • Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58:1586–92. Detailed analysis of interactions of cannabidiol with common anti-seizure drugs. CrossRefPubMedGoogle Scholar
  51. 51.
    Grayson L, Vines B, Nichol K, Szaflarski JP, Program UC. An interaction between warfarin and cannabidiol, a case report. Epilepsy Behav Case Rep. 2018;9:10–1.CrossRefPubMedGoogle Scholar
  52. 52.
    Gaston TE, Liu Y, Cutter GR, Bebin E, Grayson LE, Szaflarski JP. Effect of pharmaceutical formulation of cannabidiol (CBD) on seizure frequency and severity does not appear to be dependent on drug-drug interactions with other anti-epileptic drugs. American Academy of Neurology Annual Meeting; 2018 25 April 2018; Los Angeles, CA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Alabama at Birmingham Epilepsy CenterBirminghamUSA
  2. 2.312 Civitan International Research CenterBirminghamUSA

Personalised recommendations