Advertisement

Microbiota-Brain-Gut Axis and Neurodegenerative Diseases

  • Eamonn M. M. QuigleyEmail author
Genetics (V Bonifati, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetics

Abstract

Purpose of Review

The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease, and, finally, to assess the potential for microbiota-targeted therapies.

Recent Findings

Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson’s disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials.

Summary

In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

Keywords

Microbiota Microbiome Gut-brain axis Neurodegenerative diseases Parkinson’s disease Alzheimer’s disease Probiotics Antibiotics Fecal microbiota transplantation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Eamonn M. M. Quigley declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. 1.
    Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol. 2015;135:25–30.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Costello ME, Robinson PC, Benham H, Brown MA. The intestinal microbiome in human disease and how it relates to arthritis and spondyloarthritis. Best Pract Res Clin Rheumatol. 2015;29:202–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Mathur R, Barlow GM. Obesity and the microbiome. Expert Rev Gastroenterol Hepatol. 2015;9:1087–99.PubMedCrossRefGoogle Scholar
  4. 4.
    Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Claesson MJ, O'Toole PW. Evaluating the latest high-throughput molecular techniques for the exploration of microbial gut communities. Gut Microbes. 2010;1:277–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wang WL, SY X, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World J Gastroenterol. 2015;21:803–14.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kim Y, Koh I, Rho M. Deciphering the human microbiome using next-generation sequencing data and bioinformatics approaches. Methods. 2015;79-80:52–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Vernocchi P, Del Chierico F, Putignani L. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front Microbiol. 2016;7:1144.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    GD W, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.CrossRefGoogle Scholar
  12. 12.
    Neu J. The microbiome during pregnancy and early postnatal life. Semin Fetal Neonatal Med. 2016;21:373–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63:559–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Dogra S, Sakwinska O, Soh SE, Ngom-Bru C, Brück WM, Berger B, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio. 2015;6:e02419–4.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cong X, Xu W, Janton S, Henderson WA, Matson A, McGrath JM, et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS One. 2016;11:e0152751.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.PubMedCrossRefGoogle Scholar
  17. 17.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015;17:553–64.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Diaz Heijtz R. Fetal, neonatal, and infant microbiome: perturbations and subsequent effects on brain development and behavior. Semin Fetal Neonatal Med. 2016;21:410–7.PubMedCrossRefGoogle Scholar
  20. 20.
    •• Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 167:915–32. A comprehensive and insightful review from leaders in the field. Google Scholar
  21. 21.
    •• Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595:489–503. A detailed and carefully argued discussion of the importance of the gut microbiome in CNS development and in the pathophysiology of CNS disorders from the individuals who have popularized the term “microbiota-gut-brain axis”. PubMedCrossRefGoogle Scholar
  22. 22.
    Zeissig S, Blumberg RS. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol. 2014;15:307–10.PubMedCrossRefGoogle Scholar
  23. 23.
    • Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging. 2016;4:3–16. Given the age profile of many patients with neurodegenerative diseases, changes in the microbiome related to aging per se are important. PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.PubMedGoogle Scholar
  25. 25.
    Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shanahan F, van Sinderen D, O'Toole PW, Stanton C. Feeding the microbiota: transducer of nutrient signals for the host. Gut. 2017;66:1709–17.Google Scholar
  27. 27.
    Doré J, Blottière H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339:548–54.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–21.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–86.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH, De Palma G, Madsen K, Bercik P, Vanner S. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut. 2017;66:1241–51.Google Scholar
  32. 32.
    Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–24.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Heinritz SN, Weiss E, Eklund M, Aumiller T, Louis S, Rings A, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS One. 2016;11:e0154329.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22:971–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–5.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Degnan PH, Taga ME, Goodman AL. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 2014;20:769–78.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015;64:93–100.PubMedCrossRefGoogle Scholar
  39. 39.
    Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016;8:45.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    • Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest. 2014;124:4212–8. Highlights another important confounder in human studies. PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352:544–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Freedberg DE, Toussaint NC, Chen SP, Ratner AJ, Whittier S, Wang TC, et al. Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial. Gastroenterology. 2015;149:883–5.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jackson MA, Goodrich JK, Maxan ME, Freedberg DE, Abrams JA, Poole AC, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2016;65:749–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Surana NK, Kasper DL. Deciphering the tête-à-tête between the microbiota and the immune system. J Clin Invest. 2014;124:4197–203.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol. 2017;312:G171–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Dey N, Wagner VE, Blanton LV, Cheng J, Fontana L, Haque R, et al. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell. 2015;163:95–107.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, et al. The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes. 2015;6:398–403.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Savidge TC. Epigenetic regulation of enteric neurotransmission by gut bacteria. Front Cell Neurosci. 2016;9:503.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587:4153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 2014;124:4173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12:453–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory effects of gut microbiota on the central nervous system: how the gut could play a role in neuropsychiatric health and disease. J Neurogastroenterol Motil. 2016;22:201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Phillips GB, Schwartz R, Gabuzda GJ Jr, Davidson CS. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N Engl J Med. 1952;247:239–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Martini GA, Phear EA, Ruebner B, Sherlock S. The bacterial content of the small intestine in normal and cirrhotic subjects: relation to methionine toxicity. Clin Sci. 1957;16:35–51.PubMedGoogle Scholar
  57. 57.
    Phear EA, Ruebner B, Sherlock S, Summerskill WH. Methionine toxicity in liver disease and its prevention by chlortetracycline. Clin Sci. 1956;15:93–117.PubMedGoogle Scholar
  58. 58.
    Quigley EMM. Gastrointestinal dysfunction in liver disease—gut-liver interactions revisited. Dig Dis Sci. 1996;41:557–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Thalheimer U, Triantos CK, Samonakis DN, Patch D, Burroughs AK. Infection, coagulation and variceal bleeding in cirrhosis. Gut. 2005;54:556–63.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Quigley EM, Abu-Shanab A, Murphy EF, Stanton C, Monsour HP Jr. The metabolic role of the microbiome: implications for NAFLD and the metabolic syndrome. Semin Liver Dis. 2016;36:312–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Stärkel P, Schnabl B. Bidirectional communication between liver and gut during alcoholic liver disease. Semin Liver Dis. 2016;36:331–9.PubMedCrossRefGoogle Scholar
  62. 62.
    •• Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016;151:836–44. Emphasizes the role of microbiota-host interactions. PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125:926–38.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23:255–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108:3047–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19:146–8.PubMedCrossRefGoogle Scholar
  67. 67.
    • Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry. 2015;78:e7–9. Nice evidence for the role of the microbiota in neurogenesis. PubMedCrossRefGoogle Scholar
  68. 68.
    Luczynski P, Whelan SO, O’Sullivan C, Clarke G, Shanahan F, Dinan TG, et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurol. 2016;44:2654–66.Google Scholar
  69. 69.
    Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotrophic factor and behavior in mice. Gastroenterology. 2011;141:599–609.PubMedCrossRefGoogle Scholar
  70. 70.
    Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    • Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev. 2016;74:624–34. Summarizes the current status of the microbiota-gut-brain axis in Alzheimer’s disease. PubMedCrossRefGoogle Scholar
  73. 73.
    Dobbs SM, Dobbs RJ, Weller C, Charlett A, Augustin A, Taylor D, et al. Peripheral aetiopathogenic drivers and mediators of Parkinson’s disease and co-morbidities: role of gastrointestinal microbiota. J Neuro-Oncol. 2016;22:22–32.Google Scholar
  74. 74.
    Houser MC, Tansey MG. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis. 2017;3:3.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and alzheimer’s disease. J Alzheimers Dis. 2017;58:1–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017.Google Scholar
  77. 77.
    Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer's disease. J Alzheimers Dis. 2015;43:725–38.  https://doi.org/10.3233/JAD-160152.PubMedGoogle Scholar
  78. 78.
    Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, et al. Microbes and Alzheimer’s disease. J Alzheimers Dis. 2016;51:979–84.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol. 2015;21:10609–20.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM. Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord. 2016;27:1–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM, et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep. 2016;6:34477.  https://doi.org/10.1038/srep34477.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Noble JM, Scarmeas N, Celenti RS, Elkind MS, Wright CB, Schupf N, et al. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease. PLoS One. 2014;9:e114959.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat Disord. 2017;38:61–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Shen X, Yang H, Wu Y, Zhang D, Jiang H. Association of Helicobacter pylori infection with Parkinson’s diseases: a meta-analysis. Helicobacter. 2017;22:e12398.Google Scholar
  85. 85.
    Scheperjans F, Pekkonen E, Kaakkola S, Auvinen P. Linking smoking, coffee, urate, and Parkinson’s disease—a role for gut microbiota? J Parkinsons Dis. 2015;5:255–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Yuan T, Ma H, Liu W, Niesen DB, Shah N, Crews R, et al. Pomegranate’s neuroprotective effects against alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci. 2016;7:26–33.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, et al. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol Nutr Food Res. 2015;59:1025–40.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep. 2016;6:30028.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017;7:41802.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Shen L, Liu L, Ji HF. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis. 2017;56:385–90.PubMedCrossRefGoogle Scholar
  91. 91.
    Brandscheid C, Schuck F, Reinhardt S, Schäfer KH, Pietrzik CU, Grimm M, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis. 2017;56:775–88.PubMedCrossRefGoogle Scholar
  92. 92.
    •• Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–80. Though largely based on animal models, the study provides a compelling argument for a critical role for the microbiota in PD. PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang YG, Wu S, Yi J, Xia Y, Jin D, Zhou J, et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther. 2017;39:322–36.PubMedCrossRefGoogle Scholar
  94. 94.
    Pierantozzi M, Pietroiusti A, Sancesario G, Lunardi G, Fedele E, Giacomini P, et al. Reduced L-dopa absorption and increased clinical fluctuations in Helicobacter pylori-infected Parkinson’s disease patients. Neurol Sci. 2001;22:89–91.PubMedCrossRefGoogle Scholar
  95. 95.
    Dobbs SM, Dobbs RJ, Weller C, Charlett A, Bjarnason IT, Lawson AJ, et al. Differential effect of Helicobacter pylori eradication on time-trends in brady/hypokinesia and rigidity in idiopathic parkinsonism. Helicobacter. 2010;15:279–94.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Tan AH, Mahadeva S, Marras C, Thalha AM, Kiew CK, Yeat CM, et al. Helicobacter pylori infection is associated with worse severity of Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:221–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Hashim H, Azmin S, Razlan H, Yahya NW, Tan HJ, Manaf MR, et al. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One. 2014;9:e112330.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Quigley EM. Gastrointestinal dysfunction in Parkinson’s disease. Semin Neurol. 1996;16:245–50.PubMedCrossRefGoogle Scholar
  99. 99.
    Mukherjee A, Biswas A, Das SK. Gut dysfunction in Parkinson’s disease. World J Gastroenterol. 2016;22:5742–52.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A, Kraneveld AD. The gut-brain axis in Parkinson's disease: possibilities for food-based therapies. Eur J Pharmacol. 2017.Google Scholar
  101. 101.
    Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord. 2013;28:1241–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Cassani E, Barichella M, Cancello R, Cavanna F, Iorio L, Cereda E, et al. Increased urinary indoxyl sulfate (indican): new insights into gut dysbiosis in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:389–93.PubMedCrossRefGoogle Scholar
  103. 103.
    Andreadou E, Pantazaki AA, Daniilidou M, Tsolaki M. Rhamnolipids, microbial virulence factors, in Alzheimer’s disease. J Alzheimers Dis. 2017;59:209–22.PubMedCrossRefGoogle Scholar
  104. 104.
    Goldman SM, Kamel F, Ross GW, Jewell SA, Marras C, Hoppin JA, et al. Peptidoglycan recognition protein genes and risk of Parkinson’s disease. Mov Disord. 2014;29:1171–80.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30:350–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 2017;9:39.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015;30:1351–60.PubMedCrossRefGoogle Scholar
  108. 108.
    Hopfner F, Künstner A, Müller SH, Künzel S, Zeuner KE, Margraf NG, et al. Gut microbiota in Parkinson disease in a northern German cohort. Brain Res. 2017;1667:41–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Engen PA, Dodiya HB, Naqib A, Forsyth CB, Green SJ, Voigt RM, et al. The potential role of gut-derived inflammation in multiple system atrophy. J Parkinsons Dis. 2017;7:331–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–8.PubMedCrossRefGoogle Scholar
  111. 111.
    • Quigley EMM. Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol. 2017;14:315–20. Highlights the limitations of microbiome analysis in human disease. PubMedCrossRefGoogle Scholar
  112. 112.
    Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63–72.PubMedCrossRefGoogle Scholar
  113. 113.
    Devkota S. Prescription drugs obscure microbiome analyses. Science. 2016;351:452–3.PubMedCrossRefGoogle Scholar
  114. 114.
    Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord. 2017;32:739–49.PubMedCrossRefGoogle Scholar
  115. 115.
    Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS Drugs. 2016;30:1019–41.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Yu M, Jia H, Zhou C, Yang Y, Zhao Y, Yang M, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal. 2017;138:231–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745–57.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163:1428–43.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21:797–805.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    • Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55. A very up-to-date review. PubMedCrossRefGoogle Scholar
  121. 121.
    Girolamo F, Coppola C, Ribatti D. Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun. 2017;65:68–89.Google Scholar
  122. 122.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med. 2016;14:58.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Quigley EM. Leaky gut—concept or clinical entity. Curr Opin Gastroenterol. 2016;32:74–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and HepatologyHouston Methodist Hospital and Weill Cornell Medical CollegeHoustonUSA

Personalised recommendations