Laser Interstitial Thermal Therapy for Epilepsy

  • Eric Prince
  • Shahin Hakimian
  • Andrew L. Ko
  • Jeffrey G. Ojemann
  • Michelle S. Kim
  • John W. MillerEmail author
Epilepsy (CW Bazil, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Epilepsy


MRI-guided laser interstitial thermal therapy (MgLiTT) uses a narrow diameter cannula to stereotactically target and heat deeper cerebral structures. This technique produces a precise lesion in the brain with great reliability because the localized tissue temperature change is monitored in real time. Because MgLiTT minimizes injury to surrounding brain, it appears to have a lower risk of affecting normal neurological function, and because it is done through a burr hole, there is less operative risk, less discomfort, and shorter hospitalizations. It is FDA approved for soft tissue ablation and is being increasingly applied to the surgical treatment of epilepsy, especially when seizures arise from deeper structures such as the hippocampus, amygdala, or discrete dysplastic tissue such as hypothalamic hamartomas. Mesial temporal epilepsy is the most frequently encountered surgically remedial epilepsy suitable for MgLiTT, particularly when there is unilateral hippocampal sclerosis. There is emerging evidence that it can be effective for eliminating seizures in this type of epilepsy, and that it has a lower risk of cognitive deficits than anterior temporal lobectomy.


Laser interstitial thermal therapy Epilepsy Epilepsy surgery Amygdalohippocampectomy Drug-resistant epilepsy 


Compliance with Ethical Standards

Conflict of Interest

Eric Prince declares that he has no conflict of interest.

Shahin Hakimian, Andrew L. Ko, Jeffrey G. Ojemann, Michelle S. Kim, and John W. Miller receive research funding from Medtronic Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):1069–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Tovar-Spinoza Z, Carter D, Ferrone D, Eksioglu Y, Huckins S. The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst. 2013;29(11):2089–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Rosomoff HL, Carroll F. Reaction of neoplasm and brain to laser. Arch Neurol. 1966;14(2):143–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Brown S. Phototherapy in tumors. World J Surg. 1983;7:700–9.CrossRefGoogle Scholar
  7. 7.
    Sugiyama K, Sakai T, Fujishima I, et al. Stereotactic interstitial laserhyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg. 1990;54:501–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Fan M, Ascher P, Germann R, Ebner F. Temperature profiles of interstitial 1.06 Nd:YAG laserthermia in human cadaver brain. In: Spinelli P, Dal Fante M, Marchesini R, editors. Photodynamic therapy and biomedical lasers. Amsterdam: Elsevier Science; 1992. p. 349–53.Google Scholar
  9. 9.
    Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, Desai MB. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. Am J Neuroradiol. 2015;36(11):1998–2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Norred SE, Johnson JA. Magnetic resonance-guided laser induced thermal therapy for glioblastoma multiforme: a review. Biomed Res Int. 2014;2014:10761312.CrossRefGoogle Scholar
  11. 11.
    Ahrar K, Gowda A, Javadi S, Borne A, Fox M, McNichols R, Ahrar JU, Stephens C, Stafford RJ. Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model. J Vasc Interv Radiol. 2010;21(4):555–61.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, Desai MB. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. Am J Neuroradiol. 2015;36(11):1998–2006.CrossRefPubMedGoogle Scholar
  13. 13.
    Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol. 2000;174(2):323–31.CrossRefGoogle Scholar
  15. 15.
    Schwabe B, Khan T, Harth T, et al. Laser induced thermal lesions in the human brain: short-and long-term appearance on MRI. J Computer Asst Tomogr. 1997;21:818–25.CrossRefGoogle Scholar
  16. 16.
    Mohammadi AM, Schroeder JL. Laser interstitial thermal therapy in treatment of brain tumors—the NeuroBlate system. Expert Rev Med Devices. 2014;11(2):109–19.CrossRefPubMedGoogle Scholar
  17. 17.
    Carpentier A, McNichols RJ, Stafford RJ, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med. 2011;43(10):943–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Gonzalez-Martinez J, Vadera S, Mullin J, Enatsu R, Alexopoulos AV, Patwardhan R, Bingaman W, Najm I. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery. 2014;10(Suppl 2):167–72. discussion 172–3.Google Scholar
  19. 19.
    Norred SE, Johnson JA. Magnetic resonance-guided laser induced thermal therapy for glioblastoma multiforme: a review. Biomed Res Int. 2014;2014:761312.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Penfield W, Jasper HH. Epilepsy and the functional anatomy of the human brain. Boston: Little Brown and Company; 1954.Google Scholar
  21. 21.
    Penfield W, Baldwin M. Temporal lobe seizures and the technic of subtotal temporal lobectomy. Ann Surg. 1952;136:625–34.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Engel J Jr, Van Ness PC, Rasmussen TB, Ojemann LM. Outcome with respect to epileptic seizures. In: Engel Jr J, editor. Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press; 1993. p. 609–21.Google Scholar
  23. 23.
    AM MI, Kalnins RM, Mitchell LA, Fabinyi GC, Briellmann RS, Berkovic SF. Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence. Brain. 2004;127(Pt 9):2018–30.Google Scholar
  24. 24.
    de Tisi J, Bell GS, Peacock JL, McEvoy AW, Harkness WF, Sander JW, Duncan JS. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet. 2011;378:1388–95.CrossRefPubMedGoogle Scholar
  25. 25.
    Salanova V, Markand O, Worth R. Longitudinal follow-up in 145 patients with medically refractory temporal lobe epilepsy treated surgically between 1984 and 1995. Epilepsia. 1999;40(10):1417–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Hermann BP, Wyler AR, Bush AJ, Tabatabai FR. Differential effects of left and right anterior temporal lobectomy on verbal learning and memory performance. Epilepsia. 1992;33(2):289–97.CrossRefPubMedGoogle Scholar
  27. 27.
    Phillips NA, McGlone J. Grouped data do not tell the whole story: individual analysis of cognitive change after temporal lobectomy. J Clin Exp Neuropsychol. 1995;17(5):713–24.CrossRefPubMedGoogle Scholar
  28. 28.
    Rausch R, Kraemer S, Pietras CJ, Le M, Vickrey BG, Passaro EA. Early and late cognitive changes following temporal lobe surgery for epilepsy. Neurology. 2003;60:951–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Helmstaedter C. Cognitive outcomes of different surgical approaches in temporal lobe epilepsy. Epileptic Disord. 2013;15(3):221–39.PubMedGoogle Scholar
  30. 30.
    Drane DL, Ojemann GA, Aylward E, Ojemann JG, Johnson LC, Silbergeld DL, Miller JW, Tranel D. Category-specific naming and recognition deficits in temporal lobe epilepsy surgical patients. Neuropsychologia. 2008;46(5):1242–55.CrossRefPubMedGoogle Scholar
  31. 31.
    Niemeyer P. The transventricular amygdalohippocampectomy in temporal lobe epilepsy. In: Bailey P, Baldwin M, editors. Temporal lobe epilepsy. Springfield: Charles C. Thomas; 1958. p. 461–82.Google Scholar
  32. 32.
    Hori T, Kondo S, Takenobu A, Hirao J, Kohaya N, Takeuchi H, Watanabe T. Retrolabyrinthine presigmoid transpetrosal approach for selective subtemporal amygdalohippocampectomy. Neurol Med Chir (Tokyo). 1999; 39(3):214–24. discussion 224–5.Google Scholar
  33. 33.
    Hoyt AT, Smith KA. Selective amygdalohippocampectomy. Neurosurg Clin N Am. 2016;27:1–17.CrossRefPubMedGoogle Scholar
  34. 34.
    Yaşargil MG, Teddy PJ, Roth P. Selective amygdalo-hippocampectomy. Operative anatomy and surgical technique. Adv Tech Stand Neurosurg. 1985;12:93–123.CrossRefPubMedGoogle Scholar
  35. 35.
    Josephson CB, Dykeman J, Fiest KM, Liu X, Sadler RM, Jette N, Wiebe S. Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery. Neurology. 2013;80(18):1669–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Hu WH, Zhang C, Zhang K, Meng FG, Chen N, Zhang JG. Selective amygdalohippocampectomy versus anterior temporal lobectomy in the management of mesial temporal lobe epilepsy: a meta-analysis of comparative studies. J Neurosurg. 2013;119(5):1089–97.CrossRefPubMedGoogle Scholar
  37. 37.
    Tanriverdi T, Dudley RW, Hasan A, Al Jishi A, Al Hinai Q, Poulin N, Colnat-Coulbois S, Olivier A. Memory outcome after temporal lobe epilepsy surgery: corticoamygdalohippocampectomy versus selective amygdalohippocampectomy. J Neurosurg. 2010;113(6):1164–75.CrossRefPubMedGoogle Scholar
  38. 38.
    Wendling AS, Hirsch E, Wisniewski I, Davanture C, Ofer I, Zentner J, Bilic S, Scholly J, Staack AM, Valenti MP, Schulze-Bonhage A, Kehrli P, Steinhoff BJ. Selective amygdalohippocampectomy versus standard temporal lobectomy in patients with mesial temporal lobe epilepsy and unilateral hippocampal sclerosis. Epilepsy Res. 2013;104(1–2):94–104.CrossRefPubMedGoogle Scholar
  39. 39.
    Régis J, Bartolomei F, Rey M, Hayashi M, Chauvel P, Peragut JC. Gamma knife surgery for mesial temporal lobe epilepsy. J Neurosurg. 2000;93(Suppl 3):141–6.PubMedGoogle Scholar
  40. 40.
    Barbaro NM, Quigg M, Broshek DK, Ward MM, Lamborn KR, Laxer KD, Larson DA, Dillon W, Verhey L, Garcia P, Steiner L, Heck C, Kondziolka D, Beach R, Olivero W, Witt TC, Salanova V, Goodman R. A multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy: seizure response, adverse events, and verbal memory. Ann Neurol. 2009;65(2):167–75.CrossRefPubMedGoogle Scholar
  41. 41.
    •• Curry DJ, Gowda A, McNichols RJ, Wilfong AA. MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav. 2012;24(4):408–14. First report of selective laser ablation of amygdala and hippocampus for treatment of mesial temporal epilepsy. CrossRefPubMedGoogle Scholar
  42. 42.
    Willie JT, Laxpati NG, Drane DL, Gowda A, Appin C, Hao C, Brat DJ, Helmers SL, Saindane A, Nour SG, Gross RE. Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery. 2014;74(6):569–85.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gross RE, Willie JT, Drane DL. The role of stereotactic laser amygdalohippocampotomy in mesial temporal lobe epilepsy. Neurosurg Clin N Am. 2016;27(1):37–50.CrossRefPubMedGoogle Scholar
  44. 44.
    Grewal S, Zimmerman R, Van Gompel J, Worrell G, Brinkmann B, Tatum W, Crepeau A, Woodrum D, Gorny K, Felmlee J, Watson R, Hoxworth J, Kaufmann T, Marsh R, Gupta V, Vibhute P, Wharen R. Laser ablation for mesial temporal epilepsy: a multi-institutional Mayo Clinic series. Abstract, American Epilepsy Society Annual Meeting, 2016.Google Scholar
  45. 45.
    Jermakowicz WJ, Kanner AM, Sur S, Bermudez C, D'Haese PF, Kolcun JP, Cajigas I, Li R, Millan C, Ribot R, Serrano EA, Velez N, Lowe MR, Rey GJ, Jagid JR. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia. 2017; doi: 10.1111/epi.13715.
  46. 46.
    Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, Skidmore C, Mintzer S, Sharan AD, Sperling MR. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016;57:325–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Waseem H, Osborn KE, Schoenberg MR, Kelley V, Bozorg A, Cabello D, Benbadis SR, Vale FL. Laser ablation therapy: an alternative treatment for medically resistant mesial temporal lobe epilepsy after age 50. Epilepsy Behav. 2015;51:152–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Stern M, Willie J, Gross R. Magnetic resonance-guided stereotactic laser amygdalohippocampectomy for mesial temporal lobe epilepsy is noninferior to open temporal lobe surgery. American Epilepsy Society Annual Meeting. Abstract, 2016.Google Scholar
  49. 49.
    Chez M, Ciricillo S, Ghassemi A, Sekhon A, Nagy-Wilde E, Seminario-Lopez N, Quan J. Long term outcome from stereotactic MRI-guided laser ablation surgery for epilepsy: temporal and extratemporal experience. American Epilepsy Society Annual Meeting. Abstract, 2016.Google Scholar
  50. 50.
    Wu C, Boorman DW, Gorniak RJ, Farrell CJ, Evans JJ, Sharan AD. The effects of anatomic variations on stereotactic laser amygdalohippocampectomy and a proposed protocol for trajectory planning. Neurosurgery. 2015;11(Suppl 2):345–56. discussion 356–7.Google Scholar
  51. 51.
    Miller JW. Seizure outcome and the clinical role of selective laser ablation of the amygdala and hippocampus. Investigators’ workshop: Hippocampus and amygdala: reducing collateral damage. American Epilepsy Society, 2015 Annual Meeting.Google Scholar
  52. 52.
    Gross RE, Willie JT, Drane DL. The role of stereotactic laser amygdalohippocampotomy in mesial temporal lobe epilepsy. Neurosurg Clin N Am. 2016;27(1):37–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Surgery for Epilepsy. NIH Consensus Statement 1990;8(2):1–20.Google Scholar
  54. 54.
    Engel J Jr, McDermott MP, Wiebe S, Langfitt JT, Stern JM, Dewar S, et al. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA. 2012;307(9):922–30.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    •• Drane DL, Loring DW, Voets NL, Price M, Ojemann JG, Willie JT, Saindane AM, Phatak V, Ivanisevic M, Millis S, Helmers SL, Miller JW, Meador KJ, Gross RE. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampectomy for temporal lobe epilepsy. Epilepsia. 2015;56(1):101–13. Comparison of cognitive outcomes of SLAH and ATL, showing relative preservation of naming and recognition functions with SLAH. CrossRefPubMedGoogle Scholar
  56. 56.
    Drane DL. Decreasing cognitive morbidity of epilepsy surgery through enhanced knowledge of neural networks and novel laser ablation technology. Investigators’ workshop: Hippocampus and amygdala: reducing collateral damage. American Epilepsy Society, 2015 Annual Meeting.Google Scholar
  57. 57.
    Dredla BK, Lucas JA, Wharen RE, Tatum WO. Neurocognitive outcome following stereotactic laser ablation in two patients with MRI−/PET+ mTLE. Epilepsy Behav. 2016;56:44–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Bermudez C, Jermakowicz W, Millan C, McInerney K, Jagid J, Lowe M, Palomeque M, Ribot R, Serrano E, Tornes L, Velez-Ruiz N, Kanner A, Rey G. Hippocampal volume loss following stereotactic laser ablation for the treatment of temporal lobe epilepsies and associated changes in neuropsychological test performance. Abstract, American Epilepsy Society Annual Meeting 2016.Google Scholar
  59. 59.
    Striano S, Striano P, Coppola A, Romanelli P. The syndrome gelastic seizures-hypothalamic hamartoma: severe, potentially reversible encephalopathy. Epilepsia. 2009;50(Suppl 5):62–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Rekate HL, Feiz-Erfan I, Ng YT, Gonzalez LF, Kerrigan JF. Endoscopic surgery for hypothalamic hamartomas causing medically refractory gelastic epilepsy. Childs Nerv Syst. 2006;22(8):874–80.CrossRefPubMedGoogle Scholar
  61. 61.
    Fujimoto Y, Kato A, Saitoh Y, Ninomiya H, Imai K, Sakakibara RI, Maruno M, Kishima H, Yoshimura K, Hasegawa H, Yoshimine T. Stereotactic radiofrequency ablation for sessile hypothalamic hamartoma with an image fusion technique. Acta Neurochir. 2003;145:697–700.CrossRefPubMedGoogle Scholar
  62. 62.
    Parrent AG. Stereotactic radiofrequency ablation for the treatment of gelastic seizures associated with hypothalamic hamartoma. Case report J Neurosurg. 1999;91:881–4.PubMedGoogle Scholar
  63. 63.
    Kuzniecky RI, Guthrie BL. Stereotactic surgical approach to hypothalamic hamartomas. Epileptic Disord. 2003;5:275–80.PubMedGoogle Scholar
  64. 64.
    Régis J, Scavarda D, Tamura M, Nagayi M, Villeneuve N, Bartolomei F, Brue T, Dafonseca D, Chauvel P. Epilepsy related to hypothalamic hamartomas: surgical management with special reference to gamma knife surgery. Childs Nerv Syst. 2006;22(8):881–95.CrossRefPubMedGoogle Scholar
  65. 65.
    •• Wilfong AA, Curry DJ. Hypothalamic hamartomas: optimal approach to clinical evaluation and diagnosis. Epilepsia. 2013;54(Suppl 9):109–14. Outcomes of MgLiTT treatment of hypothalamic hamartomas. CrossRefPubMedGoogle Scholar
  66. 66.
    Burrows AM, Marsh WR, Worrell G, Woodrum DA, Pollock BE, Gorny KR, Felmlee JP, Watson RE, Kaufmann TJ, Goerss S, Van Gompel JJ. Magnetic resonance imaging-guided laser interstitial thermal therapy for previously treated hypothalamic hamartomas. Neurosurg Focus. 2016;41(4):E8.CrossRefPubMedGoogle Scholar
  67. 67.
    Buckley RT, Wang AC, Miller JW, Novotny EJ, Ojemann JG. Stereotactic laser ablation for hypothalamic and deep intraventricular lesions. Neurosurg Focus. 2016;41(4):E10.CrossRefPubMedGoogle Scholar
  68. 68.
    Rolston JD, Chang EF. Stereotactic laser ablation for hypothalamic hamartoma. Neurosurg Clin N Am. 2016;27(1):59–67.CrossRefPubMedGoogle Scholar
  69. 69.
    Tovar-Spinoza Z, Carter D, Ferrone D, Eksioglu Y, Huckins S. The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst. 2013;29(11):2089–94.CrossRefPubMedGoogle Scholar
  70. 70.
    Zubkov S, Del Bene VA, MacAllister WS, Shepherd TM, Devinsky O. Disabling amnestic syndrome following stereotactic laser ablation of a hypothalamic hamartoma in a patient with a prior temporal lobectomy. Epilepsy Behav Case Rep. 2015;4:60–2.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Raychaudhuri R, Batjer HH, Awad IA. Intracranial cavernous angioma: a practical review of clinical and biological aspects. Surg Neurol. 2005;63:319–28.CrossRefPubMedGoogle Scholar
  72. 72.
    McCracken DJ, Willie JT, Fernald B, Saindane AM, Drane DL, Barrow DL, Gross RE. Magnetic resonance thermometry-guided stereotactic laser ablation of cavernous malformations in drug-resistant epilepsy: imaging and clinical results. Oper Neurosurg (Hagerstown). 2016;12(1):39–48.CrossRefGoogle Scholar
  73. 73.
    Choudhri O, Lober RM, Camara-Quintana J, Yeom KW, Guzman R, Edwards MS. Carbon dioxide laser for corpus callosotomy in the pediatric population. J Neurosurg Pediatr. 2015;5(3):321–7.CrossRefGoogle Scholar
  74. 74.
    Falowski S, Byrne R. Corpus callosotomy with the CO2 laser suction device: a technical note. Stereotact Funct Neurosurg. 2012;90(3):137–40.CrossRefPubMedGoogle Scholar
  75. 75.
    Ho AL, Miller KJ, Cartmell S, Inoyama K, Fisher RS, Halpern CH. Stereotactic laser ablation of the splenium for intractable epilepsy. Epilepsy Behav Case Rep. 2016;5:23–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Esquenazi Y, Kalamangalam GP, Slater JD, Knowlton RC, Friedman E, Morris SA, Shetty A, Gowda A, Tandon N. Stereotactic laser ablation of epileptogenic periventricular nodular heterotopia. Epilepsy Res. 2014;108(3):547–54.CrossRefPubMedGoogle Scholar
  77. 77.
    Wellmera J, Kopitzkib K, Vogesb J. Lesion focused stereotactic thermo-coagulation of focal cortical dysplasia IIB: a new approach to epilepsy surgery? Seizure. 2014;23(6):475–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Eric Prince
    • 1
  • Shahin Hakimian
    • 1
  • Andrew L. Ko
    • 2
  • Jeffrey G. Ojemann
    • 2
  • Michelle S. Kim
    • 1
  • John W. Miller
    • 1
    • 2
    Email author
  1. 1.Departments of Neurology and Neurological SurgeryUniversity of WashingtonSeattleUSA
  2. 2.Departments of Neurological SurgeryUniversity of WashingtonSeattleUSA

Personalised recommendations