Targeted Treatment of Brain Metastases

  • Nicole Shonka
  • Vyshak Alva Venur
  • Manmeet S. Ahluwalia
Neuro-oncology (L Abrey, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-Oncology

Abstract

Purpose of Review

Brain metastases are the most common intracranial tumors in adults. Historically, the median survival after the diagnosis of brain metastases has been dismal and medical therapies had a limited role in the management of these patients.

Recent Findings

The advent of targeted therapy has ushered in an era of increased hope for patients with brain metastases. The most common malignancies that result in brain metastases—melanoma, lung cancer, and breast cancer, often have actionable mutations, which make them good candidates for targeted systemic therapy. These brain metastases have been shown to have relevant and sometimes divergent genetic alterations, and there has been a resurgence of interest in targeted drug delivery to the brain by using standard or pulsatile dosing to achieve adequate concentration in the brain.

Summary

An increased understanding of oncogenic alterations, a surge in targeted drug development with good blood barrier penetration, and inclusion of patients with active brain metastases on clinical trials have led to improved outcomes for patients with brain metastases.

Keywords

Targeted therapy Brain metastases Clinical trials EGFR ALK HER2 

Notes

Compliance with Ethical Standards

Conflict of Interest

Nicole Shonka and Vyshak Alva Venur declare that they have no conflict of interest.

Manmeet Ahluwalia has received grants and personal fees from Elekta, Incyte, BMS, Astrazeneca, and Novocure. Dr. Ahluwalia has also received grants from Tracon and Novartis, along with personal fees from Monteris Medical, Caris Life Sciences, MRI Solutions, Abbvie, Elsevier, and Prime Oncology.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Schouten LJ, Rutten J, Huveneers HA, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94(10):2698–705.CrossRefPubMedGoogle Scholar
  2. 2.
    Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2004;22(14):2865–72. doi: 10.1200/jco.2004.12.149.CrossRefGoogle Scholar
  3. 3.
    Cohen JV, Tawbi H, Margolin KA, Amravadi R, Bosenberg M, Brastianos PK, et al. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment cell & melanoma research. 2016; doi: 10.1111/pcmr.12538.Google Scholar
  4. 4.
    Lassman AB, DeAngelis LM. Brain metastases. Neurol Clin. 2003;21(1):1–23. viiCrossRefPubMedGoogle Scholar
  5. 5.
    Venur VA, Ahluwalia MS. Prognostic scores for brain metastasis patients: use in clinical practice and trial design. Chin Clin Oncol. 2015;4(2):18. doi: 10.3978/j.issn.2304-3865.2015.06.01.PubMedGoogle Scholar
  6. 6.
    Sperduto PW, Chao ST, Sneed PK, Luo X, Suh J, Roberge D, et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys. 2010;77(3):655–61. doi: 10.1016/j.ijrobp.2009.08.025.CrossRefPubMedGoogle Scholar
  7. 7.
    Venur VA, Ahluwalia MS. Targeted therapy in brain metastases: ready for primetime? American Society of Clinical Oncology educational book American Society of Clinical Oncology Meeting. 2016;35:e123–30. doi: 10.14694/edbk_100006.CrossRefPubMedGoogle Scholar
  8. 8.
    Doolittle ND. Brain metastases in hematologic malignancies. In: Raizer JJ, Abrey LE, editors. Brain Metastases. Boston, MA: Springer US; 2007. p. 169–83.CrossRefGoogle Scholar
  9. 9.
    Pestalozzi BC, Francis P, Quinaux E, Dolci S, Azambuja E, Gelber RD, et al. Is risk of central nervous system (CNS) relapse related to adjuvant taxane treatment in node-positive breast cancer? Results of the CNS substudy in the intergroup phase III BIG 02-98 trial. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2008;19(11):1837–41. doi: 10.1093/annonc/mdn385.CrossRefGoogle Scholar
  10. 10.
    Skibber JM, Soong SJ, Austin L, Balch CM, Sawaya RE. Cranial irradiation after surgical excision of brain metastases in melanoma patients. Ann Surg Oncol. 1996;3(2):118–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Sampson JH, Carter Jr JH, Friedman AH, Seigler HF. Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma. J Neurosurg. 1998;88(1):11–20. doi: 10.3171/jns.1998.88.1.0011.CrossRefPubMedGoogle Scholar
  12. 12.
    Fife KM, Colman MH, Stevens GN, Firth IC, Moon D, Shannon KF, et al. Determinants of outcome in melanoma patients with cerebral metastases. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2004;22(7):1293–300. doi: 10.1200/jco.2004.08.140.CrossRefGoogle Scholar
  13. 13.
    Raizer JJ, Hwu WJ, Panageas KS, Wilton A, Baldwin DE, Bailey E, et al. Brain and leptomeningeal metastases from cutaneous melanoma: survival outcomes based on clinical features. Neuro-Oncology. 2008;10(2):199–207. doi: 10.1215/15228517-2007-058.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer discovery. 2015;5(11):1164–77. doi: 10.1158/2159-8290.cd-15-0369.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med. 2014;20(6):682–8. doi: 10.1038/nm.3559. http://www.nature.com/nm/journal/v20/n6/abs/nm.3559.html#supplementary-information.CrossRefPubMedGoogle Scholar
  16. 16.
    • Sperduto PW, Wang M, Robins HI, Schell MC, Werner-Wasik M, Komaki R, et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: radiation therapy oncology group 0320. Int J Radiat Oncol Biol Phys. 2013;85(5):1312–8. doi: 10.1016/j.ijrobp.2012.11.042. This phase 3 trial evaluated the role of adding temozolomide or erlotinib to the standard radiation therapy for management of brain metastases from non-small cell lung cancer.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ceresoli GL, Cappuzzo F, Gregorc V, Bartolini S, Crino L, Villa E. Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2004;15(7):1042–7. doi: 10.1093/annonc/mdh276.CrossRefGoogle Scholar
  18. 18.
    Welsh JW, Komaki R, Amini A, Munsell MF, Unger W, Allen PK, et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(7):895–902. doi: 10.1200/jco.2011.40.1174.CrossRefGoogle Scholar
  19. 19.
    • Gadgeel SM, Shaw AT, Govindan R, Gandhi L, Socinski MA, Camidge DR, et al. Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small cell lung cancer. J Clin Oncol. 0(0):JCO684639. doi: 10.1200/JCO.2016.68.4639. A pooled analysis of alectnib an ALK inhibitor in the management of ALK positive non small cell lung cancer patients with brain metastases. The study combined the available data from two phase 2 clinical trials.
  20. 20.
    • Bachelot T, Romieu G, Campone M, Dieras V, Cropet C, Dalenc F, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. The Lancet Oncology. 2013;14(1):64–71. doi: 10.1016/s1470-2045(12)70432-1. A combination of lapatinib and capecitabine was shown to have clinical activity in HER2-positive metastatic breast cancer with brain metastases in this phase 2 trial.CrossRefPubMedGoogle Scholar
  21. 21.
    Cortes J, Dieras V, Ro J, Barriere J, Bachelot T, Hurvitz S, et al. Afatinib alone or afatinib plus vinorelbine versus investigator’s choice of treatment for HER2-positive breast cancer with progressive brain metastases after trastuzumab, lapatinib, or both (LUX-breast 3): a randomised, open-label, multicentre, phase 2 trial. The Lancet Oncology. 2015;16(16):1700–10. doi: 10.1016/s1470-2045(15)00373-3.CrossRefPubMedGoogle Scholar
  22. 22.
    • Freedman RA, Gelman RS, Wefel JS, Melisko ME, Hess KR, Connolly RM, et al. Translational breast cancer research consortium (TBCRC) 022: a phase II of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016; doi: 10.1200/jco.2015.63.0343. This phase 2 trial evaluated a novel small molecule anti-HER2 agent in the management of HER2-positive breast cancer patients with brain metastases. Although the trial was negative, it provided valuable experience of conducting a clinical trial in brain metastases patients.Google Scholar
  23. 23.
    • Long GV, Trefzer U, Davies MA, Kefford RF, Ascierto PA, Chapman PB, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. The Lancet Oncology. 2012;13(11):1087–95. doi: 10.1016/s1470-2045(12)70431-x. A phase 2 trial of dabrafanib in metastatic melanoma with brain metastases evaluated patients with two common BRAF mutations.CrossRefPubMedGoogle Scholar
  24. 24.
    • GA MA, Maio M, Arance A, Nathan P, Blank C, Avril MF, et al. Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2016; doi: 10.1093/annonc/mdw641. The phase 2 study tested the intracranial activity of vemurafenib among patients with brain metastases from melanoma. Improtantly, this study divided patients into two cohorts: intracranial treatment naive and previously treated.Google Scholar
  25. 25.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi: 10.3322/caac.21332.CrossRefPubMedGoogle Scholar
  26. 26.
    Peters S, Bexelius C, Munk V, Leighl N. The impact of brain metastasis on quality of life, resource utilization and survival in patients with non-small-cell lung cancer. Cancer Treat Rev. 2016;45:139–62. doi: 10.1016/j.ctrv.2016.03.009.CrossRefPubMedGoogle Scholar
  27. 27.
    D'Antonio C, Passaro A, Gori B, Del Signore E, Migliorino MR, Ricciardi S, et al. Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Therapeutic advances in medical oncology. 2014;6(3):101–14. doi: 10.1177/1758834014521110.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Herrlinger U, Forschler H, Kuker W, Meyermann R, Bamberg M, Dichgans J, et al. Leptomeningeal metastasis: survival and prognostic factors in 155 patients. J Neurol Sci. 2004;223(2):167–78. doi: 10.1016/j.jns.2004.05.008.CrossRefPubMedGoogle Scholar
  29. 29.
    Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(8):1039–49. doi: 10.1200/jco.2012.45.3753.CrossRefGoogle Scholar
  30. 30.
    Bronte G, Rolfo C, Giovannetti E, Cicero G, Pauwels P, Passiglia F, et al. Are erlotinib and gefitinib interchangeable, opposite or complementary for non-small cell lung cancer treatment? Biological, pharmacological and clinical aspects. Crit Rev Oncol Hematol. 2014;89(2):300–13. doi: 10.1016/j.critrevonc.2013.08.003.CrossRefPubMedGoogle Scholar
  31. 31.
    Pao W, Miller VA. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(11):2556–68. doi: 10.1200/jco.2005.07.799.CrossRefGoogle Scholar
  32. 32.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. doi: 10.1056/NEJMoa040938.CrossRefPubMedGoogle Scholar
  33. 33.
    Kitazaki T, Oka M, Nakamura Y, Tsurutani J, Doi S, Yasunaga M, et al. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung cancer (Amsterdam, Netherlands). 2005;49(3):337–43. doi: 10.1016/j.lungcan.2005.03.035.CrossRefGoogle Scholar
  34. 34.
    Elmeliegy MA, Carcaboso AM, Tagen M, Bai F, Stewart CF. Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011;17(1):89–99. doi: 10.1158/1078-0432.ccr-10-1934.CrossRefGoogle Scholar
  35. 35.
    Hotta K, Kiura K, Ueoka H, Tabata M, Fujiwara K, Kozuki T, et al. Effect of gefitinib (‘Iressa’, ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung cancer (Amsterdam, Netherlands). 2004;46(2):255–61. doi: 10.1016/j.lungcan.2004.04.036.CrossRefGoogle Scholar
  36. 36.
    Namba Y, Kijima T, Yokota S, Niinaka M, Kawamura S, Iwasaki T, et al. Gefitinib in patients with brain metastases from non-small-cell lung cancer: review of 15 clinical cases. Clinical lung cancer. 2004;6(2):123–8. doi: 10.3816/CLC.2004.n.026.CrossRefPubMedGoogle Scholar
  37. 37.
    Porta R, Sanchez-Torres JM, Paz-Ares L, Massuti B, Reguart N, Mayo C, et al. Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J. 2011;37(3):624–31. doi: 10.1183/09031936.00195609.CrossRefPubMedGoogle Scholar
  38. 38.
    Iuchi T, Shingyoji M, Sakaida T, Hatano K, Nagano O, Itakura M, et al. Phase II trial of gefitinib alone without radiaton therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung cancer (Amsterdam, Netherlands). 2013;82(2):282–7. doi: 10.1016/j.lungcan.2013.08.016.CrossRefGoogle Scholar
  39. 39.
    Wu YL, Zhou C, Cheng Y, Lu S, Chen GY, Huang C, et al. Erlotinib as second-line treatment in patients with advanced non-small-cell lung cancer and asymptomatic brain metastases: a phase II study (CTONG-0803). Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2013;24(4):993–9. doi: 10.1093/annonc/mds529.CrossRefGoogle Scholar
  40. 40.
    Elaimy AL, Mackay AR, Lamoreaux WT, Fairbanks RK, Demakas JJ, Cooke BS, et al. Multimodality treatment of brain metastases: an institutional survival analysis of 275 patients. World journal of surgical oncology. 2011;9:69. doi: 10.1186/1477-7819-9-69.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet (London, England). 2004;363(9422):1665–72. doi: 10.1016/s0140-6736(04)16250-8.CrossRefGoogle Scholar
  42. 42.
    Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91. doi: 10.1001/jama.295.21.2483.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang J, Yu J, Sun X, Meng X. Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of central nerve system metastases from non-small cell lung cancer. Cancer Lett. 2014;351(1):6–12. doi: 10.1016/j.canlet.2014.04.019.CrossRefPubMedGoogle Scholar
  44. 44.
    Grommes C, Oxnard GR, Kris MG, Miller VA, Pao W, Holodny AI, et al. "Pulsatile" high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro-Oncology. 2011;13(12):1364–9. doi: 10.1093/neuonc/nor121.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yu HA, Sima CS, Reales D, Jordan S, Rudin CM, Kris MG et al., editors. A phase I study of twice weekly pulse dose and daily low dose erlotinib as initial treatment for patients (pts) with EGFR-mutant lung cancers. ASCO Annual Meeting Proceedings; 2015.Google Scholar
  46. 46.
    Dempke WC, Edvardsen K, Lu S, Reinmuth N, Reck M, Inoue A. Brain metastases in NSCLC—are TKIs changing the treatment strategy? Anticancer Res. 2015;35(11):5797–806.PubMedGoogle Scholar
  47. 47.
    Lee SM, Lewanski CR, Counsell N, Ottensmeier C, Bates A, Patel N, et al. Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J Natl Cancer Inst. 2014;106(7) doi: 10.1093/jnci/dju151.
  48. 48.
    Sperduto PW, Shanley R, Luo X, Andrews D, Werner-Wasik M, Valicenti R, et al. Secondary analysis of RTOG 9508, a phase 3 randomized trial of whole-brain radiation therapy versus WBRT plus stereotactic radiosurgery in patients with 1-3 brain metastases; poststratified by the graded prognostic assessment (GPA). Int J Radiat Oncol Biol Phys. 2014;90(3):526–31. doi: 10.1016/j.ijrobp.2014.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-lung 3 and LUX-lung 6): analysis of overall survival data from two randomised, phase 3 trials. The Lancet Oncology. 2015;16(2):141–51. doi: 10.1016/s1470-2045(14)71173-8.CrossRefPubMedGoogle Scholar
  50. 50.
    Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(27):3327–34. doi: 10.1200/jco.2012.44.2806.CrossRefGoogle Scholar
  51. 51.
    Wu Y-L, Zhou C, Hu C-P, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. The Lancet Oncology. 2014;15(2):213–22. doi: 10.1016/S1470-2045(13)70604-1.CrossRefPubMedGoogle Scholar
  52. 52.
    Schuler M, Wu YL, Hirsh V, O'Byrne K, Yamamoto N, Mok T, et al. First-line afatinib versus chemotherapy in patients with non-small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2016;11(3):380–90. doi: 10.1016/j.jtho.2015.11.014.CrossRefGoogle Scholar
  53. 53.
    Hoffknecht P, Tufman A, Wehler T, Pelzer T, Wiewrodt R, Schutz M, et al. Efficacy of the irreversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2015;10(1):156–63. doi: 10.1097/jto.0000000000000380.CrossRefGoogle Scholar
  54. 54.
    Ballard P, Yates JW, Yang Z, Kim DW, Yang JC, Cantarini M, et al. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016; doi: 10.1158/1078-0432.ccr-16-0399.Google Scholar
  55. 55.
    Yang J, editor. Osimertinib activity in patients (pts) with leptomeningeal (LM) disease from non-small cell lung cancer (NSCLC): updated results from BLOOM, a phase I study. Abstract 9002 [oral presentation]. Annual meeting of the American Society of Clinical Oncology; 2016.Google Scholar
  56. 56.
    Kim D-W, Yang JC-H, Chen K, Cheng Z, Yin L, Martin PD, et al. AZD3759, an EGFR inhibitor with blood brain barrier (BBB) penetration for the treatment of non-small cell lung cancer (NSCLC) with brain metastases (BM): preclinical evidence and clinical cases. ASCO Meeting Abstracts. 2015;33(15_suppl):8016.Google Scholar
  57. 57.
    Metro G, Lunardi G, Floridi P, Pascali JP, Marcomigni L, Chiari R, et al. CSF concentration of crizotinib in two ALK-positive non-small-cell lung cancer patients with CNS metastases deriving clinical benefit from treatment. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2015;10(5):e26–7. doi: 10.1097/jto.0000000000000468.CrossRefGoogle Scholar
  58. 58.
    Costa DB, Kobayashi S, Pandya SS, Yeo WL, Shen Z, Tan W, et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011;29(15):e443–5. doi: 10.1200/jco.2010.34.1313.CrossRefGoogle Scholar
  59. 59.
    Costa DB, Shaw AT, Ou SH, Solomon BJ, Riely GJ, Ahn MJ, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33(17):1881–8. doi: 10.1200/jco.2014.59.0539.CrossRefGoogle Scholar
  60. 60.
    Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77. doi: 10.1056/NEJMoa1408440.CrossRefPubMedGoogle Scholar
  61. 61.
    Solomon BJ, Cappuzzo F, Felip E, Blackhall FH, Costa DB, Kim DW, et al. Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from PROFILE 1014. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(24):2858–65. doi: 10.1200/jco.2015.63.5888.CrossRefGoogle Scholar
  62. 62.
    Shaw A, Mehra R, Tan DSW, Felip E, Chow LQM, Ross Camidge D, et al. BM-32 ceritinib (LDK378) for treatment of patients with ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC) and brain metastases (BM) in the ASCEND-1 trial. Neuro-Oncology. 2014;16(suppl 5):v39. doi: 10.1093/neuonc/nou240.32.CrossRefPubMedCentralGoogle Scholar
  63. 63.
    • Crino L, Ahn MJ, De Marinis F, Groen HJ, Wakelee H, Hida T, et al. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(24):2866–73. doi: 10.1200/jco.2015.65.5936. The clinical activity of ceritinib, a second-generation ALK inhibitor was evaluated in this phase 2 study which included non-small cell lung cancer patients with brain metastases and harboring ALK mutation.CrossRefGoogle Scholar
  64. 64.
    Nokihara H, Hida T, Kondo M, Kim Y, Azuma K, Seto T et al. Alectinib (ALC) versus crizotinib (CRZ) in ALK-inhibitor naive ALK-positive non-small cell lung cancer (ALK+ NSCLC): primary results from the J-ALEX study. Annual Meeting of the American Society of Clinical Oncology 2016.Google Scholar
  65. 65.
    Kim D, Tiseo M, Ahn M, Reckamp KL, Hansen KH, Kim SW, et al. Brigatinib (BRG) in patients (pts) with crizotinib (CRZ)-refractory ALK+ non-small cell lung cancer (NSCLC): first report of efficacy and safety from a pivotal randomized phase (ph) 2 trial (ALTA). Annual Meeting of American College of Clinical Oncology; Chicago: J Clin Oncol. 2016;34(suppl; abstr 9007):2016.Google Scholar
  66. 66.
    Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011;29(15):2046–51. doi: 10.1200/jco.2010.33.1280.CrossRefGoogle Scholar
  67. 67.
    Kruse V, Rottey S, De Backer O, Van Belle S, Cocquyt V, Denys H. PARP inhibitors in oncology: a new synthetic lethal approach to cancer therapy. Acta Clin Belg. 2011;66(1):2–9. doi: 10.2143/acb.66.1.2062507.CrossRefPubMedGoogle Scholar
  68. 68.
    Chabot P, Hsia TC, Ryu JS, Gorbunova V, Belda-Iniesta C, Ball D, et al. Veliparib in combination with whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer: results of a randomized, global, placebo-controlled study. J Neuro-Oncol. 2016; doi: 10.1007/s11060-016-2275-x.Google Scholar
  69. 69.
    Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(20):3271–7. doi: 10.1200/jco.2009.25.9820.CrossRefGoogle Scholar
  70. 70.
    Witzel I, Oliveira-Ferrer L, Pantel K, Müller V, Wikman H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res. 2016;18(1):1–9. doi: 10.1186/s13058-015-0665-1.CrossRefGoogle Scholar
  71. 71.
    Aversa C, Rossi V, Geuna E, Martinello R, Milani A, Redana S, et al. Metastatic breast cancer subtypes and central nervous system metastases. Breast (Edinburgh, Scotland). 2014;23(5):623–8. doi: 10.1016/j.breast.2014.06.009.CrossRefGoogle Scholar
  72. 72.
    Sperduto PW, Kased N, Roberge D, Chao ST, Shanley R, Luo X, et al. The effect of tumor subtype on the time from primary diagnosis to development of brain metastases and survival in patients with breast cancer. J Neuro-Oncol. 2013;112(3):467–72. doi: 10.1007/s11060-013-1083-9.CrossRefGoogle Scholar
  73. 73.
    Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62. doi: 10.3389/fonc.2012.00062.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Stemmler HJ, Kahlert S, Siekiera W, Untch M, Heinrich B, Heinemann V. Characteristics of patients with brain metastases receiving trastuzumab for HER2 overexpressing metastatic breast cancer. Breast (Edinburgh, Scotland). 2006;15(2):219–25. doi: 10.1016/j.breast.2005.04.017.CrossRefGoogle Scholar
  75. 75.
    Pestalozzi BC, Brignoli S. Trastuzumab in CSF. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2000;18(11):2349–51.CrossRefGoogle Scholar
  76. 76.
    Bartsch R, Rottenfusser A, Wenzel C, Dieckmann K, Pluschnig U, Altorjai G, et al. Trastuzumab prolongs overall survival in patients with brain metastases from Her2 positive breast cancer. J Neuro-Oncol. 2007;85(3):311–7. doi: 10.1007/s11060-007-9420-5.CrossRefGoogle Scholar
  77. 77.
    Yap YS, Cornelio GH, Devi BC, Khorprasert C, Kim SB, Kim TY, et al. Brain metastases in Asian HER2-positive breast cancer patients: anti-HER2 treatments and their impact on survival. Br J Cancer. 2012;107(7):1075–82. doi: 10.1038/bjc.2012.346.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Olson EM, Abdel-Rasoul M, Maly J, Wu CS, Lin NU, Shapiro CL. Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2013;24(6):1526–33. doi: 10.1093/annonc/mdt036.CrossRefGoogle Scholar
  79. 79.
    • Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–55. doi: 10.1093/emboj/16.7.1647.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem. 1999;274(13):8865–74.CrossRefPubMedGoogle Scholar
  81. 81.
    Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66(3):1630–9. doi: 10.1158/0008-5472.can-05-1182.CrossRefPubMedGoogle Scholar
  82. 82.
    Rusnak D, Gilmer TM. The discovery of lapatinib (GW572016). Mol Cancer Ther. 2011;10(11):2019. doi: 10.1158/1535-7163.mct-11-0697.CrossRefPubMedGoogle Scholar
  83. 83.
    Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. 2012;29(3):770–81. doi: 10.1007/s11095-011-0601-8.CrossRefPubMedGoogle Scholar
  84. 84.
    Lin NU, Carey LA, Liu MC, Younger J, Come SE, Ewend M, et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008;26(12):1993–9. doi: 10.1200/jco.2007.12.3588.CrossRefGoogle Scholar
  85. 85.
    Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(4):1452–9. doi: 10.1158/1078-0432.ccr-08-1080.CrossRefGoogle Scholar
  86. 86.
    Lim E, Lin NU. Updates on the management of breast cancer brain metastases. Oncology (Williston Park, NY). 2014;28(7):572–8.Google Scholar
  87. 87.
    Venur VA, Leone JP. Targeted therapies for brain metastases from breast cancer. Int J Mol Sci. 2016;17(9):1543.CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lin NU, Freedman RA, Miller K, Jhaveri KL, Eiznhamer DA, Berger MS, et al. Determination of the maximum tolerated (MTD) of the CNS penetrant tyrosine kinase inhibitor (TKI) tesevatinib administered in combination with trastuzumab in HER2+ patients with metastatic breast cancer (BC). ASCO Meeting Abstracts. 2016;34(15_suppl):514.Google Scholar
  89. 89.
    Freedman RA, Gelman RS, Wefel JS, Melisko ME, Hess KR, Connolly RM, et al. Translational breast cancer research consortium (TBCRC) 022: a phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016;34(9):945–52. doi: 10.1200/jco.2015.63.0343.CrossRefGoogle Scholar
  90. 90.
    • Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91. doi: 10.1056/NEJMoa1209124.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Krop IE, Lin NU, Blackwell K, Guardino E, Huober J, Lu M, et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2015;26(1):113–9. doi: 10.1093/annonc/mdu486.CrossRefGoogle Scholar
  92. 92.
    Jacot W, Pons E, Frenel JS, Guiu S, Levy C, Heudel PE, et al. Efficacy and safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive breast cancer with brain metastases. Breast Cancer Res Treat. 2016;157(2):307–18. doi: 10.1007/s10549-016-3828-6.CrossRefPubMedGoogle Scholar
  93. 93.
    Bartsch R, Berghoff AS, Vogl U, Rudas M, Bergen E, Dubsky P, et al. Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clinical & experimental metastasis. 2015;32(7):729–37. doi: 10.1007/s10585-015-9740-3.CrossRefGoogle Scholar
  94. 94.
    Borges VF, Ferrario C, Aucoin N, Falkson CI, Khan QJ, Krop IE, et al. Efficacy results of a phase 1b study of ONT-380, a CNS-penetrant TKI, in combination with T-DMI in HER2+ metastatic breast cancer (MBC), including patients (pts) with brain metastases. ASCO Meeting Abstracts. 2016;34(15_suppl):513.Google Scholar
  95. 95.
    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–76. doi: 10.1056/NEJMoa072113.CrossRefPubMedGoogle Scholar
  96. 96.
    Lu YS, Chen TW, Lin CH, Yeh DC, Tseng LM, Wu PF, et al. Bevacizumab preconditioning followed by etoposide and cisplatin is highly effective in treating brain metastases of breast cancer progressing from whole-brain radiotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(8):1851–8. doi: 10.1158/1078-0432.ccr-14-2075.CrossRefGoogle Scholar
  97. 97.
    Lee JJ, Loh K, Yap YS. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer biology & medicine. 2015;12(4):342–54. doi: 10.7497/j.issn.2095-3941.2015.0089.Google Scholar
  98. 98.
    Baselga J, Campone M, Piccart M, Burris 3rd HA, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9. doi: 10.1056/NEJMoa1109653.CrossRefPubMedGoogle Scholar
  99. 99.
    Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet (London, England). 2013;381(9861):125–32. doi: 10.1016/s0140-6736(12)61134-9.CrossRefGoogle Scholar
  100. 100.
    • Leone JP, Leone BA. Breast cancer brain metastases: the last frontier. Experimental hematology & oncology. 2015;4:33. doi: 10.1186/s40164-015-0028-8.CrossRefGoogle Scholar
  101. 101.
    Davies MA, Liu P, McIntyre S, Kim KB, Papadopoulos N, Hwu WJ, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer. 2011;117(8):1687–96. doi: 10.1002/cncr.25634.CrossRefPubMedGoogle Scholar
  102. 102.
    • Flaherty KT, McArthur G. BRAF, a target in melanoma: implications for solid tumor drug development. Cancer. 2010;116(21):4902–13. doi: 10.1002/cncr.25261.CrossRefPubMedGoogle Scholar
  103. 103.
    Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379(9829):1893–901. doi: 10.1016/s0140-6736(12)60398-5.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    • Dummer R, Goldinger SM, Turtschi CP, Eggmann NB, Michielin O, Mitchell L, et al. Vemurafenib in patients with BRAF (V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. European journal of cancer (Oxford, England : 1990). 2014;50(3):611–21. doi: 10.1016/j.ejca.2013.11.002.CrossRefGoogle Scholar
  105. 105.
    Rompoti N, Schilling B, Livingstone E, Griewank K, Hillen U, Sauerwein W, et al. Combination of BRAF inhibitors and brain radiotherapy in patients with metastatic melanoma shows minimal acute toxicity. J Clin Oncol. 2013;31(30):3844–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nicole Shonka
    • 1
  • Vyshak Alva Venur
    • 2
  • Manmeet S. Ahluwalia
    • 3
  1. 1.Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.University of Iowa Hospitals and ClinicsIowaUSA
  3. 3.Brain Metastasis Research Program, Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Medicine, Cleveland ClinicNeurological InstituteClevelandUSA

Personalised recommendations