Advertisement

Neuroinflammation in Neurodegenerative Disorders—a Review

  • Martin Schain
  • William Charles KreislEmail author
Neuroimaging (DJ Brooks, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuroimaging

Abstract

The potential for positron emission tomography (PET) to detect neuroinflammation in vivo has sparked a remarkable interest in various disciplines of neuroscience. Early PET radioligands, such as [11C]PK(R)-11195 for the 18-kDa translocator protein (TSPO) and [11C]L-deprenyl for monoamine oxidase B, have been used in studies designed to clarify the role of neuroinflammation in a variety of psychiatric and neurological disorders. Recent years have witnessed the development of several second-generation PET radioligands for TSPO and radioligands to measure endogenous targets that are active in various stages of the inflammatory cascade, such as cyclooxygenase and arachidonic acid. Here, we discuss some of the biomarkers for neuroinflammation that are available for quantification with PET, as well as recent findings from studies where neuroinflammation has been assessed in neurodegenerative disorders. In addition, we highlight the challenges to accurate interpretation of PET studies of neuroinflammation.

Keywords

Positron emission tomography Inflammation Translocator protein Neurodegeneration 

Notes

Compliance with Ethical Standards

Conflict of Interest

Martin Schain and William Charles Kreisl declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. 1.
    Kanegawa N, Collste K, Forsberg A, Schain M, Arakawa R, Jucaite A, et al. In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects. Brain Behav Immun. 2016;54:149–57. doi: 10.1016/j.bbi.2016.01.019.PubMedCrossRefGoogle Scholar
  2. 2.
    Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A. 2011;648(Supplement 1):S236–S40. doi: 10.1016/j.nima.2010.11.092.PubMedCrossRefGoogle Scholar
  3. 3.
    Slifstein M, Laruelle M. Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol. 2001;28(5):595–608.PubMedCrossRefGoogle Scholar
  4. 4.
    Varnas K, Varrone A, Farde L. Modeling of PET data in CNS drug discovery and development. J Pharmacokinet Pharmacodyn. 2013;40(3):267–79. doi: 10.1007/s10928-013-9320-6.PubMedCrossRefGoogle Scholar
  5. 5.
    Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3 Pt 1):153–8. doi: 10.1006/nimg.1996.0066.PubMedCrossRefGoogle Scholar
  6. 6.
    Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40. doi: 10.1097/00004647-199609000-00008.PubMedCrossRefGoogle Scholar
  7. 7.
    Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35(12):2304–19. doi: 10.1007/s00259-008-0908-9.PubMedCrossRefGoogle Scholar
  8. 8.
    Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci U S A. 1977;74(9):3805–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Papadopoulos V, Aghazadeh Y, Fan J, Campioli E, Zirkin B, Midzak A. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis. Mol Cell Endocrinol. 2015;408:90–8. doi: 10.1016/j.mce.2015.03.014.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26(6):771–90. doi: 10.1016/j.beem.2012.05.002.PubMedCrossRefGoogle Scholar
  11. 11.
    Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27(8):402–9. doi: 10.1016/j.tips.2006.06.005.PubMedCrossRefGoogle Scholar
  12. 12.
    Banati RB, Middleton RJ, Chan R, Hatty CR, Kam WW, Quin C, et al. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat Commun. 2014;5:5452. doi: 10.1038/ncomms6452.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V. Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology. 2014;155(1):89–97. doi: 10.1210/en.2013-1556.PubMedCrossRefGoogle Scholar
  14. 14.
    Selvaraj V, Stocco DM, Tu LN. Translocator protein (TSPO) and steroidogenesis: a reappraisal. Mol Endocrinol. 2015;29(4):490–501. doi: 10.1210/me.2015-1033.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tu LN, Morohaku K, Manna PR, Pelton SH, Butler WR, Stocco DM, et al. Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem. 2014;289(40):27444–54. doi: 10.1074/jbc.M114.578286.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tu LN, Zhao AH, Stocco DM, Selvaraj V. PK11195 effect on steroidogenesis is not mediated through the translocator protein (TSPO). Endocrinology. 2015;156(3):1033–9. doi: 10.1210/en.2014-1707.PubMedCrossRefGoogle Scholar
  17. 17.
    Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int. 2002;40(6):475–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Kuhlmann AC, Guilarte TR. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J Neurochem. 2000;74(4):1694–704.PubMedCrossRefGoogle Scholar
  19. 19.
    Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009;35(3):306–28. doi: 10.1111/j.1365-2990.2008.01006.x.PubMedCrossRefGoogle Scholar
  20. 20.
    Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994;62(1):15–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One. 2012;7(12):e52941. doi: 10.1371/journal.pone.0052941.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Saura J, Richards JG, Mahy N. Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. Neurobiol Aging. 1994;15(4):399–408.PubMedCrossRefGoogle Scholar
  23. 23.
    Saura J, Richards JG, Mahy N. Age-related changes on MAO in Bl/C57 mouse tissues: a quantitative radioautographic study. J Neural Transm Suppl. 1994;41:89–94.PubMedGoogle Scholar
  24. 24.
    Aquilonius SM, Jossan SS, Ekblom JG, Askmark H, Gillberg PG. Increased binding of 3H-L-deprenyl in spinal cords from patients with amyotrophic lateral sclerosis as demonstrated by autoradiography. J Neural Transm Gen Sect. 1992;89(1–2):111–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Jossan SS, Gillberg PG, Gottfries CG, Karlsson I, Oreland L. Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience. 1991;45(1):1–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol. 1990;80(4):419–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Oreland L. Monoamine oxidase activity and affective illness. Acta Psychiatr Scand Suppl. 1980;280:41–7.PubMedGoogle Scholar
  28. 28.
    Aid S, Bosetti F. Targeting cyclooxygenases-1 and -2 in neuroinflammation: therapeutic implications. Biochimie. 2011;93(1):46–51. doi: 10.1016/j.biochi.2010.09.009.PubMedCrossRefGoogle Scholar
  29. 29.
    Le Fur G, Vaucher N, Perrier ML, Flamier A, Benavides J, Renault C, et al. Differentiation between two ligands for peripheral benzodiazepine binding sites, [3H]RO5-4864 and [3H]PK 11195, by thermodynamic studies. Life Sci. 1983;33(5):449–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Guo Y, Kalathur RC, Liu Q, Kloss B, Bruni R, Ginter C, et al. Protein structure. Structure and activity of tryptophan-rich TSPO proteins. Science. 2015;347(6221):551–5. doi: 10.1126/science.aaa1534.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Diorio D, Welner SA, Butterworth RF, Meaney MJ, Suranyi-Cadotte BE. Peripheral benzodiazepine binding sites in Alzheimer’s disease frontal and temporal cortex. Neurobiol Aging. 1991;12(3):255–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Venneti S, Lopresti BJ, Wang G, Hamilton RL, Mathis CA, Klunk WE, et al. PK11195 labels activated microglia in Alzheimer’s disease and in vivo in a mouse model using PET. Neurobiol Aging. 2009;30(8):1217–26. doi: 10.1016/j.neurobiolaging.2007.11.005.PubMedCrossRefGoogle Scholar
  33. 33.
    Hatty CR, Le Brun AP, Lake V, Clifton LA, Liu GJ, James M, et al. Investigating the interactions of the 18 kDa translocator protein and its ligand PK11195 in planar lipid bilayers. Biochim Biophys Acta. 2014;1838(3):1019–30. doi: 10.1016/j.bbamem.2013.12.013.PubMedCrossRefGoogle Scholar
  34. 34.
    Lockhart A, Davis B, Matthews JC, Rahmoune H, Hong G, Gee A, et al. The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker. Nucl Med Biol. 2003;30(2):199–206.PubMedCrossRefGoogle Scholar
  35. 35.
    Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, et al. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage. 2010;49(4):2924–32. doi: 10.1016/j.neuroimage.2009.11.056.PubMedCrossRefGoogle Scholar
  36. 36.
    Albrecht DS, Granziera C, Hooker JM, Loggia ML. In vivo imaging of human neuroinflammation. ACS Chem Neurosci. 2016;7(4):470–83. doi: 10.1021/acschemneuro.6b00056.PubMedCrossRefGoogle Scholar
  37. 37.
    Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med. 2011;52(1):24–32. doi: 10.2967/jnumed.110.079459.PubMedCrossRefGoogle Scholar
  38. 38.
    Owen DR, Howell OW, Tang SP, Wells LA, Bennacef I, Bergstrom M, et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab. 2010;30(9):1608–18. doi: 10.1038/jcbfm.2010.63.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5. doi: 10.1038/jcbfm.2011.147.PubMedCrossRefGoogle Scholar
  40. 40.
    Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab. 2013;33(1):53–8. doi: 10.1038/jcbfm.2012.131.PubMedCrossRefGoogle Scholar
  41. 41.
    Herrera Rivero M, Heneka MT, Papadopoulos V. Translocator protein and new targets for neuroinflammation. Clin Transl Imaging. 2015;3(6):391–402. doi: 10.1007/s40336-015-0151-x.CrossRefGoogle Scholar
  42. 42.
    Fowler JS, Logan J, Shumay E, Alia-Klein N, Wang GJ, Volkow ND. Monoamine oxidase: radiotracer chemistry and human studies. J Labelled Comp Radiopharm. 2015;58(3):51–64. doi: 10.1002/jlcr.3247.PubMedCrossRefGoogle Scholar
  43. 43.
    Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, et al. Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science. 1987;235(4787):481–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Fowler JS, Logan J, Wang GJ, Volkow ND, Telang F, Ding YS, et al. Comparison of the binding of the irreversible monoamine oxidase tracers, [(11)C]clorgyline and [(11)C]l-deprenyl in brain and peripheral organs in humans. Nucl Med Biol. 2004;31(3):313–9. doi: 10.1016/j.nucmedbio.2003.10.003.PubMedCrossRefGoogle Scholar
  45. 45.
    Nag S, Lehmann L, Kettschau G, Toth M, Heinrich T, Thiele A, et al. Development of a novel fluorine-18 labeled deuterated fluororasagiline ([(18)F]fluororasagiline-D2) radioligand for PET studies of monoamino oxidase B (MAO-B). Bioorg Med Chem. 2013;21(21):6634–41. doi: 10.1016/j.bmc.2013.08.019.PubMedCrossRefGoogle Scholar
  46. 46.
    Nag S, Kettschau G, Heinrich T, Varrone A, Lehmann L, Gulyas B, et al. Synthesis and biological evaluation of novel propargyl amines as potential fluorine-18 labeled radioligands for detection of MAO-B activity. Bioorg Med Chem. 2013;21(1):186–95. doi: 10.1016/j.bmc.2012.10.050.PubMedCrossRefGoogle Scholar
  47. 47.
    Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med. 1995;36(7):1255–62.PubMedGoogle Scholar
  48. 48.
    Chang MC, Arai T, Freed LM, Wakabayashi S, Channing MA, Dunn BB, et al. Brain incorporation of [1-11C]arachidonate in normocapnic and hypercapnic monkeys, measured with positron emission tomography. Brain Res. 1997;755(1):74–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL, et al. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab. 2002;22(12):1453–62. doi: 10.1097/00004647-200212000-00006.PubMedCrossRefGoogle Scholar
  50. 50.
    Esposito G, Giovacchini G, Der M, Liow JS, Bhattacharjee AK, Ma K, et al. Imaging signal transduction via arachidonic acid in the human brain during visual stimulation, by means of positron emission tomography. Neuroimage. 2007;34(4):1342–51. doi: 10.1016/j.neuroimage.2006.11.018.PubMedCrossRefGoogle Scholar
  51. 51.
    Takashima-Hirano M, Shukuri M, Takashima T, Goto M, Wada Y, Watanabe Y, et al. General method for the (11)C-labeling of 2-arylpropionic acids and their esters: construction of a PET tracer library for a study of biological events involved in COXs expression. Chemistry. 2010;16(14):4250–8. doi: 10.1002/chem.200903044.PubMedCrossRefGoogle Scholar
  52. 52.
    Shukuri M, Takashima-Hirano M, Tokuda K, Takashima T, Matsumura K, Inoue O, et al. In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester. J Nucl Med. 2011;52(7):1094–101. doi: 10.2967/jnumed.110.084046.PubMedCrossRefGoogle Scholar
  53. 53.
    Shukuri M, Mawatari A, Ohno M, Suzuki M, Doi H, Watanabe Y, et al. Detection of cyclooxygenase-1 in activated microglia during amyloid plaque progression: PET studies in Alzheimer’s disease model mice. J Nucl Med. 2016;57(2):291–6. doi: 10.2967/jnumed.115.166116.PubMedCrossRefGoogle Scholar
  54. 54.
    Ohnishi A, Senda M, Yamane T, Sasaki M, Mikami T, Nishio T, et al. Human whole-body biodistribution and dosimetry of a new PET tracer, [(11)C]ketoprofen methyl ester, for imagings of neuroinflammation. Nucl Med Biol. 2014;41(7):594–9. doi: 10.1016/j.nucmedbio.2014.04.008.PubMedCrossRefGoogle Scholar
  55. 55.
    Ohnishi A, Senda M, Yamane T, Mikami T, Nishida H, Nishio T, et al. Exploratory human PET study of the effectiveness of (11)C-ketoprofen methyl ester, a potential biomarker of neuroinflammatory processes in Alzheimer’s disease. Nucl Med Biol. 2016;43(7):438–44. doi: 10.1016/j.nucmedbio.2016.04.005.PubMedCrossRefGoogle Scholar
  56. 56.
    Ji B, Kumata K, Onoe H, Kaneko H, Zhang MR, Seki C, et al. Assessment of radioligands for PET imaging of cyclooxygenase-2 in an ischemic neuronal injury model. Brain Res. 2013;1533:152–62. doi: 10.1016/j.brainres.2013.08.026.PubMedCrossRefGoogle Scholar
  57. 57.
    Pacelli A, Greenman J, Cawthorne C, Smith G. Imaging COX-2 expression in cancer using PET/SPECT radioligands: current status and future directions. J Labelled Comp Radiopharm. 2014;57(4):317–22. doi: 10.1002/jlcr.3160.PubMedCrossRefGoogle Scholar
  58. 58.
    Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M, et al. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res. 2016;6(1):37. doi: 10.1186/s13550-016-0192-9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Baik SH, Kang S, Son SM, Mook-Jung I. Microglia contributes to plaque growth by cell death due to uptake of amyloid beta in the brain of Alzheimer’s disease mouse model. Glia. 2016;64(12):2274–90. doi: 10.1002/glia.23074.PubMedCrossRefGoogle Scholar
  60. 60.
    Jin SC, Carrasquillo MM, Benitez BA, Skorupa T, Carrell D, Patel D, et al. TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Mol Neurodegener. 2015;10:19. doi: 10.1186/s13024-015-0016-9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lee M, McGeer E, McGeer PL. Activated human microglia stimulate neuroblastoma cells to upregulate production of beta amyloid protein and tau: implications for Alzheimer’s disease pathogenesis. Neurobiol Aging. 2015;36(1):42–52. doi: 10.1016/j.neurobiolaging.2014.07.024.PubMedCrossRefGoogle Scholar
  62. 62.
    McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126(4):479–97. doi: 10.1007/s00401-013-1177-7.PubMedCrossRefGoogle Scholar
  63. 63.
    Raha AA, Henderson JW, Stott SR, Vuono R, Foscarin S, Friedland RP, et al. Neuroprotective effect of TREM-2 in aging and Alzheimer’s disease model. J Alzheimers Dis. 2016. doi: 10.3233/JAD-160663.Google Scholar
  64. 64.
    Asai H, Ikezu S, Woodbury ME, Yonemoto GM, Cui L, Ikezu T. Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1. Am J Pathol. 2014;184(3):808–18. doi: 10.1016/j.ajpath.2013.11.026.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Maezawa I, Zimin PI, Wulff H, Jin LW. Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem. 2011;286(5):3693–706. doi: 10.1074/jbc.M110.135244.PubMedCrossRefGoogle Scholar
  66. 66.
    Marlatt MW, Bauer J, Aronica E, van Haastert ES, Hoozemans JJ, Joels M, et al. Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast. 2014;2014:693851. doi: 10.1155/2014/693851.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Morales I, Jimenez JM, Mancilla M, Maccioni RB. Tau oligomers and fibrils induce activation of microglial cells. J Alzheimers Dis. 2013;37(4):849–56. doi: 10.3233/JAD-131843.PubMedGoogle Scholar
  68. 68.
    Shen Y, Lue L, Yang L, Roher A, Kuo Y, Strohmeyer R, et al. Complement activation by neurofibrillary tangles in Alzheimer’s disease. Neurosci Lett. 2001;305(3):165–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358(9280):461–7. doi: 10.1016/S0140-6736(01)05625-2.PubMedCrossRefGoogle Scholar
  70. 70.
    Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32(3):412–9. doi: 10.1016/j.nbd.2008.08.001.PubMedCrossRefGoogle Scholar
  71. 71.
    Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38(2):343–51. doi: 10.1007/s00259-010-1612-0.PubMedCrossRefGoogle Scholar
  72. 72.
    Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72(1):56–62. doi: 10.1212/01.wnl.0000338622.27876.0d.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    • Fan Z, Okello AA, Brooks DJ, Edison P. Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer’s disease. Brain. 2015;138(Pt 12):3685–98. doi: 10.1093/brain/awv288. The first published longitudinal study to show that TSPO binding on PET increases over time in patients with Alzheimer’s disease.PubMedCrossRefGoogle Scholar
  74. 74.
    Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med. 1995;36(12):2207–10.PubMedGoogle Scholar
  75. 75.
    Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon 11-labeled Pittsburgh compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66(1):60–7. doi: 10.1001/archneurol.2008.511.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, et al. Microglial activation in Alzheimer’s disease: an (R)-[(11)C]PK11195 positron emission tomography study. Neurobiol Aging. 2013;34(1):128–36. doi: 10.1016/j.neurobiolaging.2012.04.021.PubMedCrossRefGoogle Scholar
  77. 77.
    Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136(Pt 7):2228–38. doi: 10.1093/brain/awt145.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    • Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse C, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer’s disease to detect neuroinflammation measured with PET radioligand binding to translocator protein (TSPO). J Nucl Med. 2015. doi: 10.2967/jnumed.114.146027. This paper validated a reference region method in the second generation radioligand [ 11 C]PBR28 to avoid use of arterial catheterization in PET studies of patients with Alzheimer’s disease.
  79. 79.
    Maeda J, Zhang MR, Okauchi T, Ji B, Ono M, Hattori S, et al. In vivo positron emission tomographic imaging of glial responses to amyloid-beta and tau pathologies in mouse models of Alzheimer’s disease and related disorders. Australas J Neurosci. 2011;31(12):4720–30. doi: 10.1523/JNEUROSCI.3076-10.2011.CrossRefGoogle Scholar
  80. 80.
    Gulyas B, Makkai B, Kasa P, Gulya K, Bakota L, Varszegi S, et al. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. Neurochem Int. 2009;54(1):28–36. doi: 10.1016/j.neuint.2008.10.001.PubMedCrossRefGoogle Scholar
  81. 81.
    Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry. 2008;64(10):835–41. doi: 10.1016/j.biopsych.2008.04.021.PubMedCrossRefGoogle Scholar
  82. 82.
    Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [(11)C]DAA1106. Psychiatry Res. 2012;203(1):67–74. doi: 10.1016/j.pscychresns.2011.08.013.PubMedCrossRefGoogle Scholar
  83. 83.
    Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyas B, et al. In vivo imaging of the 18-kDa translocator protein (TSPO) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging. 2013;40(6):921–31. doi: 10.1007/s00259-013-2359-1.PubMedCrossRefGoogle Scholar
  84. 84.
    Kreisl WC, Lyoo CH, Liow JS, Wei M, Snow J, Page E, et al. (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiol Aging. 2016;44:53–61. doi: 10.1016/j.neurobiolaging.2016.04.011.PubMedCrossRefGoogle Scholar
  85. 85.
    Hamelin L, Lagarde J, Dorothee G, Leroy C, Labit M, Comley RA, et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain. 2016;139(Pt 4):1252–64. doi: 10.1093/brain/aww017.PubMedCrossRefGoogle Scholar
  86. 86.
    Carter SF, Scholl M, Almkvist O, Wall A, Engler H, Langstrom B, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53(1):37–46. doi: 10.2967/jnumed.110.087031.PubMedCrossRefGoogle Scholar
  87. 87.
    Santillo AF, Gambini JP, Lannfelt L, Langstrom B, Ulla-Marja L, Kilander L, et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an (11)C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging. 2011;38(12):2202–8. doi: 10.1007/s00259-011-1895-9.PubMedCrossRefGoogle Scholar
  88. 88.
    Hirvonen J, Kailajarvi M, Haltia T, Koskimies S, Nagren K, Virsu P, et al. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther. 2009;85(5):506–12. doi: 10.1038/clpt.2008.241.PubMedCrossRefGoogle Scholar
  89. 89.
    Choo IL, Carter SF, Scholl ML, Nordberg A. Astrocytosis measured by (11)C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer’s patients. Eur J Nucl Med Mol Imaging. 2014;41(11):2120–6. doi: 10.1007/s00259-014-2859-7.PubMedCrossRefGoogle Scholar
  90. 90.
    Sturm S, Forsberg A, Nave S, Stenkrona P, Seneca N, Varrone A, et al. Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Mol Imaging. 2016. doi: 10.1007/s00259-016-3510-6.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, et al. Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med. 2008;49(9):1414–21. doi: 10.2967/jnumed.107.049619.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ohama E, Ikuta F. Parkinson’s disease: distribution of Lewy bodies and monoamine neuron system. Acta Neuropathol. 1976;34(4):311–9.PubMedCrossRefGoogle Scholar
  93. 93.
    McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis. 2006;9(3 Suppl):417–23.PubMedGoogle Scholar
  94. 94.
    Brettschneider J, Irwin DJ, Boluda S, Byrne MD, Fang L, Lee EB, et al. Progression of alpha-synuclein pathology in multiple system atrophy of the cerebellar type. Neuropathol Appl Neurobiol. 2016. doi: 10.1111/nan.12362.PubMedGoogle Scholar
  95. 95.
    Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998;251(3):205–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Taguchi K, Watanabe Y, Tsujimura A, Tanaka M. Brain region-dependent differential expression of alpha-synuclein. J Comp Neurol. 2016;524(6):1236–58. doi: 10.1002/cne.23901.PubMedCrossRefGoogle Scholar
  97. 97.
    Sone M, Yoshida M, Hashizume Y, Hishikawa N, Sobue G. alpha-Synuclein-immunoreactive structure formation is enhanced in sympathetic ganglia of patients with multiple system atrophy. Acta Neuropathol. 2005;110(1):19–26. doi: 10.1007/s00401-005-1013-9.PubMedCrossRefGoogle Scholar
  98. 98.
    Lebouvier T, Neunlist M, Bruley des Varannes S, Coron E, Drouard A, N’Guyen JM, et al. Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One. 2010;5(9):e12728. doi: 10.1371/journal.pone.0012728.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21(2):404–12. doi: 10.1016/j.nbd.2005.08.002.PubMedCrossRefGoogle Scholar
  100. 100.
    Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38(6):938–49. doi: 10.1038/npp.2012.255.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(1):47–52. doi: 10.1016/j.parkreldis.2012.07.002.PubMedCrossRefGoogle Scholar
  102. 102.
    Gerhard A, Banati RB, Goerres GB, Cagnin A, Myers R, Gunn RN, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology. 2003;61(5):686–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Dodel R, Spottke A, Gerhard A, Reuss A, Reinecker S, Schimke N, et al. Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord. 2010;25(1):97–107. doi: 10.1002/mds.22732.PubMedCrossRefGoogle Scholar
  104. 104.
    • Jucaite A, Svenningsson P, Rinne JO, Cselenyi Z, Varnas K, Johnstrom P, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson’s disease. Brain. 2015;138(Pt 9):2687–700. doi: 10.1093/brain/awv184. The authors demonstrated that TSPO binding can be reduced in patients with Parkinson’s disease using a novel myeloperoxidase inhibitor.PubMedCrossRefGoogle Scholar
  105. 105.
    Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, et al. Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS One. 2015;10(9):e0138721. doi: 10.1371/journal.pone.0138721.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J Neurol Neurosurg Psychiatry. 1994;57(4):416–8.Google Scholar
  107. 107.
    Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JB, et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 2014;13(7):686–99. doi: 10.1016/S1474-4422(14)70065-1.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ferrer I, Lopez-Gonzalez I, Carmona M, Arregui L, Dalfo E, Torrejon-Escribano B, et al. Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol. 2014;73(1):81–97. doi: 10.1097/NEN.0000000000000030.PubMedCrossRefGoogle Scholar
  109. 109.
    Laws SM, Friedrich P, Diehl-Schmid J, Muller J, Ibach B, Bauml J, et al. Genetic analysis of MAPT haplotype diversity in frontotemporal dementia. Neurobiol Aging. 2008;29(8):1276–8. doi: 10.1016/j.neurobiolaging.2007.02.019.PubMedCrossRefGoogle Scholar
  110. 110.
    Lindquist SG, Schwartz M, Batbayli M, Waldemar G, Nielsen JE. Genetic testing in familial AD and FTD: mutation and phenotype spectrum in a Danish cohort. Clin Genet. 2009;76(2):205–9. doi: 10.1111/j.1399-0004.2009.01191.x.PubMedCrossRefGoogle Scholar
  111. 111.
    Caroppo P, Camuzat A, Guillot-Noel L, Thomas-Anterion C, Couratier P, Wong TH, et al. Defining the spectrum of frontotemporal dementias associated with TARDBP mutations. Neurol Genet. 2016;2(3):e80. doi: 10.1212/NXG.0000000000000080.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    He F, Jones JM, Figueroa-Romero C, Zhang D, Feldman EL, Goutman SA, et al. Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci. Neurol Genet. 2016;2(3):e71. doi: 10.1212/NXG.0000000000000071.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lee EB, Russ J, Jung H, Elman LB, Chahine LM, Kremens D, et al. Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U. Acta Neuropathol Commun. 2013;1(9):1–11. doi: 10.1186/2051-5960-1-9.PubMedGoogle Scholar
  114. 114.
    Ioannidis P, Konstantinopoulou E, Maiovis P, Karacostas D. The frontotemporal dementias in a tertiary referral center: classification and demographic characteristics in a series of 232 cases. J Neurol Sci. 2012;318(1–2):171–3. doi: 10.1016/j.jns.2012.04.002.PubMedCrossRefGoogle Scholar
  115. 115.
    Cagnin A, Rossor M, Sampson EL, Mackinnon T, Banati RB. In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol. 2004;56(6):894–7. doi: 10.1002/ana.20332.PubMedCrossRefGoogle Scholar
  116. 116.
    Gerhard A, Watts J, Trender-Gerhard I, Turkheimer F, Banati RB, Bhatia K, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord. 2004;19(10):1221–6. doi: 10.1002/mds.20162.PubMedCrossRefGoogle Scholar
  117. 117.
    Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord. 2006;21(1):89–93. doi: 10.1002/mds.20668.PubMedCrossRefGoogle Scholar
  118. 118.
    Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002;61(11):935–46.PubMedCrossRefGoogle Scholar
  119. 119.
    Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Imaging microglial activation in Huntington’s disease. Brain Res Bull. 2007;72(2–3):148–51. doi: 10.1016/j.brainresbull.2006.10.029.PubMedCrossRefGoogle Scholar
  120. 120.
    Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60(2):161–72.PubMedCrossRefGoogle Scholar
  121. 121.
    Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66(11):1638–43. doi: 10.1212/01.wnl.0000222734.56412.17.PubMedCrossRefGoogle Scholar
  122. 122.
    Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130(Pt 7):1759–66. doi: 10.1093/brain/awm044.PubMedCrossRefGoogle Scholar
  123. 123.
    Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P. Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain. 2008;131(Pt 11):2860–9. doi: 10.1093/brain/awn244.PubMedCrossRefGoogle Scholar
  124. 124.
    Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ, et al. Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp. 2011;32(2):258–70. doi: 10.1002/hbm.21008.PubMedCrossRefGoogle Scholar
  125. 125.
    Appel SH, Zhao W, Beers DR, Henkel JS. The microglial-motoneuron dialogue in ALS. Acta Myol. 2011;30(1):4–8.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15(3):601–9. doi: 10.1016/j.nbd.2003.12.012.PubMedCrossRefGoogle Scholar
  127. 127.
    Sitte HH, Wanschitz J, Budka H, Berger ML. Autoradiography with [3H]PK11195 of spinal tract degeneration in amyotrophic lateral sclerosis. Acta Neuropathol. 2001;101(2):75–8.PubMedGoogle Scholar
  128. 128.
    Zurcher NR, Loggia ML, Lawson R, Chonde DB, Izquierdo-Garcia D, Yasek JE, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. NeuroImage Clinical. 2015;7:409–14. doi: 10.1016/j.nicl.2015.01.009.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Molecular Imaging and Neuropathology Division, Department of PsychiatryColumbia University Medical CenterNew YorkUSA
  2. 2.Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia University Medical CenterNew YorkUSA

Personalised recommendations