Skip to main content

Advertisement

Log in

Transcranial Magnetic and Direct Current Stimulation in Children

Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Frye RE, Rotenberg A, Ousley M, Pascual-Leone A. Transcranial magnetic stimulation in child neurology: current and future directions. J Child Neurol. 2008;23(1):79–96.

    Article  PubMed  Google Scholar 

  2. Ziemann U, Paulus W, Nitsche MA, et al. Consensus: motor cortex plasticity protocols. Brain Stimul. 2008;1(3):164–82.

    Article  PubMed  Google Scholar 

  3. Rajapakse T, Kirton A. Noninvasive brain Stimulation in children: applications and future directions. Transl Neurosci. 2013;4(2):217–233. Rajapakse and Kirton reviewed translational approaches in adults and children using TMS, including developmental neurophysiology, stroke, cerebral palsy, epilepsy, and neuropsychiatric diseases .

  4. Palm U, Segmiller FM, Epple AN, et al. Transcranial direct current stimulation in children and adolescents: a comprehensive review. J Neural Transm (Vienna). 2016;123(10):1219-34. Palm et al reviewed several computational modeling studies addressing tDCS dosing in children and adolescents, as well as several clinical trials on the use of tDCS for a variety of neurologic and neuropsychiatric disorders. Overall, tDCS seems to be safe in children, and more studies are needed to confirm preliminary results .

  5. Schwedt TJ, Vargas B. Neurostimulation for treatment of migraine and cluster headache. Pain Med. 2015;16(9):1827–34.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klein MM, Treister R, Raij T, et al. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research. Pain. 2015;156(9):1601–14.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eldaief MC, Press DZ, Pascual-Leone A. Transcranial magnetic stimulation in neurology: a review of established and prospective applications. Neurol Clin Pract. 2013;3(6):519–26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Muller PA, Pascual-Leone A, Rotenberg A. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with pathologic positive sensory phenomena: a review of literature. Brain Stimul. 2012;5(3):320–9. e327.

    Article  PubMed  Google Scholar 

  9. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.

    Article  PubMed  Google Scholar 

  10. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117(12):2584–96.

    Article  PubMed  Google Scholar 

  11. Gilbert DL, Garvey MA, Bansal AS, Lipps T, Zhang J, Wassermann EM. Should transcranial magnetic stimulation research in children be considered minimal risk? Clin Neurophysiol. 2004;115(8):1730–9.

    Article  PubMed  Google Scholar 

  12. Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641-61. Evidence-based review of dosing metrics and dose-response for tDCS. The authors report that, to date, the use of tDCS protocols in thousand of patients have not resulted in any reports of a serious adverse effect or irreversible injury .

  15. Rehmann R, Sczesny-Kaiser M, Lenz M, et al. Polarity-specific cortical effects of transcranial direct current stimulation in primary somatosensory cortex of healthy humans. Front Hum Neurosci. 2016;10:208.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Garvey MA, Gilbert DL. Transcranial magnetic stimulation in children. Eur J Paediatr Neurol. 2004;8(1):7–19.

    Article  PubMed  Google Scholar 

  17. Oberman LM, Enticott PG, Casanova MF, et al. Transcranial magnetic stimulation in autism spectrum disorder: challenges, promise, and roadmap for future research. Autism Res. 2016;9(2):184–203.

    Article  PubMed  Google Scholar 

  18. Picht T, Schmidt S, Brandt S, et al. Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery. 2011;69(3):581–8. discussion 588.

    Article  PubMed  Google Scholar 

  19. Eyre JA, Taylor JP, Villagra F, Smith M, Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001;57(9):1543–54.

    Article  CAS  PubMed  Google Scholar 

  20. Eyre JA. Development and plasticity of the corticospinal system in man. Neural Plast. 2003;10(1-2):93–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fietzek UM, Heinen F, Berweck S, et al. Development of the corticospinal system and hand motor function: central conduction times and motor performance tests. Dev Med Child Neurol. 2000;42(4):220–7.

    Article  CAS  PubMed  Google Scholar 

  22. Heinen F, Fietzek UM, Berweck S, Hufschmidt A, Deuschl G, Korinthenberg R. Fast corticospinal system and motor performance in children: conduction proceeds skill. Pediatr Neurol. 1998;19(3):217–21.

    Article  CAS  PubMed  Google Scholar 

  23. Muller K, Homberg V. Development of speed of repetitive movements in children is determined by structural changes in corticospinal efferents. Neurosci Lett. 1992;144(1-2):57–60.

    Article  CAS  PubMed  Google Scholar 

  24. Muller K, Homberg V, Lenard HG. Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol. 1991;81(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  25. Muller K, Kass-Iliyya F, Reitz M. Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann Neurol. 1997;42(5):705–11.

    Article  CAS  PubMed  Google Scholar 

  26. Nezu A, Kimura S, Takeshita S. Topographical differences in the developmental profile of central motor conduction time. Clin Neurophysiol. 1999;110(9):1646–9.

    Article  CAS  PubMed  Google Scholar 

  27. Eyre JA. Corticospinal tract development and its plasticity after perinatal injury. Neurosci Biobehav Rev. 2007;31(8):1136–49.

    Article  CAS  PubMed  Google Scholar 

  28. Kirton A, Chen R, Friefeld S, Gunraj C, Pontigon AM, Deveber G. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial. Lancet Neurol. 2008;7(6):507–13.

    Article  PubMed  Google Scholar 

  29. Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116(Pt 5):1223–47.

    Article  PubMed  Google Scholar 

  30. Theoret H, Halligan E, Kobayashi M, Fregni F, Tager-Flusberg H, Pascual-Leone A. Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Curr Biol. 2005;15(3):R84–5.

    Article  CAS  PubMed  Google Scholar 

  31. Nezu A, Kimura S, Kobayashi T, et al. Transcranial magnetic stimulation in an adrenoleukodystrophy patient. Brain Dev. 1996;18(4):327–9.

    Article  CAS  PubMed  Google Scholar 

  32. Noguchi Y, Okubo O, Fuchigami T, Fujita Y, Harada K. Motor-evoked potentials in a child recovering from transverse myelitis. Pediatr Neurol. 2000;23(5):436–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cruz-Martinez A, Gonzalez-Orodea JI, Lopez Pajares R, Arpa J. Disability in multiple sclerosis. The role of transcranial magnetic stimulation. Electromyogr Clin Neurophysiol. 2000;40(7):441–7.

    CAS  PubMed  Google Scholar 

  34. Schmierer K, Irlbacher K, Grosse P, Roricht S, Meyer BU. Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation. Neurology. 2002;59(8):1218–24.

    Article  CAS  PubMed  Google Scholar 

  35. Dan B, Christiaens F, Christophe C, Dachy B. Transcranial magnetic stimulation and other evoked potentials in pediatric multiple sclerosis. Pediatr Neurol. 2000;22(2):136–8.

    Article  CAS  PubMed  Google Scholar 

  36. Buchmann J, Wolters A, Haessler F, Bohne S, Nordbeck R, Kunesch E. Disturbed transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD). Clin Neurophysiol. 2003;114(11):2036–42.

    Article  CAS  PubMed  Google Scholar 

  37. Giedd JN, Castellanos FX, Casey BJ, et al. Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. Am J Psychiatry. 1994;151(5):665–9.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer BU, Roricht S, Grafin von Einsiedel H, Kruggel F, Weindl A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain. 1995;118(Pt 2):429–40.

    Article  PubMed  Google Scholar 

  39. Steere JC, Arnsten AF. Corpus callosum morphology in ADHD. Am J Psychiatry. 1995;152(7):1105–6.

    CAS  PubMed  Google Scholar 

  40. Wu SW, Gilbert DL, Shahana N, Huddleston DA, Mostofsky SH. Transcranial magnetic stimulation measures in attention-deficit/hyperactivity disorder. Pediatr Neurol. 2012;47(3):177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buchmann J, Gierow W, Weber S, et al. Modulation of transcallosally mediated motor inhibition in children with attention deficit hyperactivity disorder (ADHD) by medication with methylphenidate (MPH). Neurosci Lett. 2006;405(1-2):14–8.

    Article  CAS  PubMed  Google Scholar 

  42. Rotenberg A. Prospects for clinical applications of transcranial magnetic stimulation and real-time EEG in epilepsy. Brain Topogr. 2010;22(4):257–66.

    Article  PubMed  Google Scholar 

  43. Hsieh TH, Dhamne SC, Chen JJ, Pascual-Leone A, Jensen FE, Rotenberg A. A new measure of cortical inhibition by mechanomyography and paired-pulse transcranial magnetic stimulation in unanesthetized rats. J Neurophysiol. 2012;107(3):966–72.

    Article  PubMed  Google Scholar 

  44. Badawy RA, Macdonell RA, Jackson GD, Berkovic SF. Why do seizures in generalized epilepsy often occur in the morning? Neurology. 2009;73(3):218–22.

    Article  CAS  PubMed  Google Scholar 

  45. Fedi M, Berkovic SF, Macdonell RA, Curatolo JM, Marini C, Reutens DC. Intracortical hyperexcitability in humans with a GABAA receptor mutation. Cereb Cortex. 2008;18(3):664–9.

    Article  PubMed  Google Scholar 

  46. Badawy R, Macdonell R, Jackson G, Berkovic S. The peri-ictal state: cortical excitability changes within 24 h of a seizure. Brain. 2009;132(Pt 4):1013–21.

    PubMed  Google Scholar 

  47. Badawy RA, Macdonell RA, Berkovic SF, Newton MR, Jackson GD. Predicting seizure control: cortical excitability and antiepileptic medication. Ann Neurol. 2010;67(1):64–73.

    Article  PubMed  Google Scholar 

  48. Di Lazzaro V, Oliviero A, Pilato F, et al. Effects of vagus nerve stimulation on cortical excitability in epileptic patients. Neurology. 2004;62(12):2310–2.

    Article  PubMed  Google Scholar 

  49. Cantello R, Varrasi C, Tarletti R, et al. Ketogenic diet: electrophysiological effects on the normal human cortex. Epilepsia. 2007;48(9):1756–63.

    Article  CAS  PubMed  Google Scholar 

  50. Gilbert DL, Isaacs KM, Augusta M, Macneil LK, Mostofsky SH. Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology. 2011;76(7):615–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Enticott PG, Kennedy HA, Rinehart NJ, Tonge BJ, Bradshaw JL, Fitzgerald PB. GABAergic activity in autism spectrum disorders: an investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology. 2013;68:202–9.

    Article  CAS  PubMed  Google Scholar 

  52. Enticott PG, Rinehart NJ, Tonge BJ, Bradshaw JL, Fitzgerald PB. A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder. Dev Med Child Neurol. 2010;52(8):e179–83.

    Article  PubMed  Google Scholar 

  53. Benali A, Trippe J, Weiler E, et al. Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci. 2011;31(4):1193–203.

    Article  CAS  PubMed  Google Scholar 

  54. Stagg CJ, Wylezinska M, Matthews PM, et al. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol. 2009;101(6):2872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hong YH, Wu SW, Pedapati EV, et al. Safety and tolerability of theta burst stimulation vs. single and paired pulse transcranial magnetic stimulation: a comparative study of 165 pediatric subjects. Front Hum Neurosci. 2015;9:29. A comparative analysis of data from 165 participants aged 6-18 years, from 2009-2014, indicated that TBS appears to be as safe as single and paired pulse TMS in terms of rate and severity of adverse events.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  57. Oberman L, Eldaief M, Fecteau S, Ifert-Miller F, Tormos JM, Pascual-Leone A. Abnormal modulation of corticospinal excitability in adults with Asperger's syndrome. Eur J Neurosci. 2012;36(6):2782–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pedapati EV, Gilbert DL, Erickson CA, et al. Abnormal cortical plasticity in youth with autism spectrum disorder: a transcranial magnetic stimulation case-control pilot study. J Child Adolesc Psychopharmacol. 2016;26(7):625-31. Pedapati et al. reported that subthreshold iTBS may be a potential neurophysiological biomarker of cortical plasticity in children and adolescents with ASD .

  59. Oberman LM, Pascual-Leone A, Rotenberg A. Modulation of corticospinal excitability by transcranial magnetic stimulation in children and adolescents with autism spectrum disorder. Front Hum Neurosci. 2014;8:627. Oberman et al. reported a positive linear relationship between age and duration of modulation of corticospinal excitability after cTBS in patients with ASD, and a paradoxical facilitatory response in a subset of the study population, suggesting aberrant plasticity and GABAergic dysfunction.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Damji O, Keess J, Kirton A. Evaluating developmental motor plasticity with paired afferent stimulation. Dev Med Child Neurol. 2015;57:548–55.

    Article  PubMed  Google Scholar 

  61. Jung NH, Janzarik WG, Delvendahl I, et al. Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome. Dev Med Child Neurol. 2013;55(1):83–9. Jung et al., reported significantly impaired LTP-like plasticity via PAS in patients with ASD, suggesting abberant synaptic connectivity and sensory-motor integration.

    Article  PubMed  Google Scholar 

  62. Player MJ, Taylor JL, Alonzo A, Loo CK. Paired associative stimulation increases motor cortex excitability more effectively than theta-burst stimulation. Clin Neurophysiol. 2012;123(11):2220–6.

    Article  PubMed  Google Scholar 

  63. Oberman LM, Enticott PG, Casanova MF, Rotenberg A, Pascual-Leone A, McCracken JT. Transcranial magnetic stimulation (TMS) therapy for autism: an international consensus conference held in conjunction with the international meeting for autism research on May 13th and 14th, 2014. Front Hum Neurosci. 2014;8:1034.

    Article  PubMed  Google Scholar 

  64. Ahmed Z, Wieraszko A. Modulation of learning and hippocampal, neuronal plasticity by repetitive transcranial magnetic stimulation (rTMS). Bioelectromagnetics. 2006;27(4):288–94.

    Article  PubMed  Google Scholar 

  65. Thickbroom GW. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res. 2007;180(4):583–93.

    Article  PubMed  Google Scholar 

  66. Trippe J, Mix A, Aydin-Abidin S, Funke K, Benali A. theta burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res. 2009;199(3-4):411–21.

    Article  CAS  PubMed  Google Scholar 

  67. Funke K, Benali A. Cortical cellular actions of transcranial magnetic stimulation. Restor Neurol Neurosci. 2010;28(4):399–417.

    PubMed  Google Scholar 

  68. Theodore WH. Transcranial magnetic stimulation in epilepsy. Epilepsy Curr. 2003;3(6):191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  70. Kirton A, Andersen J, Herrero M, et al. Brain stimulation and constraint for perinatal stroke hemiparesis: the PLASTIC CHAMPS Trial. Neurology. 2016;86(18):1659–67. Kirton et al provide class II evidence that combined repetitive TMS and constraint-induced movement therapy increases the functional motor gains seen after intensive rehabilitation therapy in children with hemiparetic cerebral palsy.

    Article  CAS  PubMed  Google Scholar 

  71. Figiel GS, Epstein C, McDonald WM, et al. The use of rapid-rate transcranial magnetic stimulation (rTMS) in refractory depressed patients. J Neuropsychiatry Clin Neurosci. 1998;10(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  72. Fregni F, Marcolin MA, Myczkowski M, et al. Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. Int J Neuropsychopharmacol. 2006;9(6):641–54.

    Article  CAS  PubMed  Google Scholar 

  73. Bloch Y, Grisaru N, Harel EV, et al. Repetitive transcranial magnetic stimulation in the treatment of depression in adolescents: an open-label study. J ECT. 2008;24(2):156–9.

    Article  PubMed  Google Scholar 

  74. Wall CA, Croarkin PE, Sim LA, et al. Adjunctive use of repetitive transcranial magnetic stimulation in depressed adolescents: a prospective, open pilot study. J Clin Psychiatry. 2011;72(9):1263–9.

    Article  PubMed  Google Scholar 

  75. Wall CA, Croarkin PE, McClintock SM, et al. Neurocognitive effects of repetitive transcranial magnetic stimulation in adolescents with major depressive disorder. Front Psych. 2013;4:165. This open label study reports that rTMS treatment decreased symptom severity and significantly improved memory and delayed verbal recall in 18 adolescent patients with major depressive disorder, with no reported changes in neurocognition.

    Google Scholar 

  76. Yang XR, Kirton A, Wilkes TC, et al. Glutamate alterations associated with transcranial magnetic stimulation in youth depression: a case series. J ECT. 2014;30(3):242–7.

    Article  PubMed  Google Scholar 

  77. Le K, Liu L, Sun M, Hu L, Xiao N. Transcranial magnetic stimulation at 1 Hertz improves clinical symptoms in children with Tourette syndrome for at least 6 months. J Clin Neurosci. 2013;20(2):257–62. Le et al report that LF-rTMS improved clinical symptoms in 25 children with Tourette Syndrome for six months after treatment.

    Article  PubMed  Google Scholar 

  78. Sokhadze EM, El-Baz AS, Tasman A, et al. Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: an exploratory study. Appl Psychophysiol Biofeedback. 2014;39(3-4):237–57.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Panerai S, Tasca D, Lanuzza B, et al. Effects of repetitive transcranial magnetic stimulation in performing eye-hand integration tasks: four preliminary studies with children showing low-functioning autism. Autism. 2014;18(6):638–50.

    Article  PubMed  Google Scholar 

  80. Amatachaya A, Jensen MP, Patjanasoontorn N, et al. The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: a randomized crossover controlled trial. Behav Neurol. 2015;2015:928631.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Amatachaya A, Auvichayapat N, Patjanasoontorn N, et al. Effect of anodal transcranial direct current stimulation on autism: a randomized double-blind crossover trial. Behav Neurol. 2014;2014:173073.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schneider HD, Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon. 2011;25(6-7):640–54.

    Article  PubMed  Google Scholar 

  83. Costanzo F, Menghini D, Casula L, et al. Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia. Brain Stimul. 2015;8(6):1233–5.

    Article  CAS  PubMed  Google Scholar 

  84. Soltaninejad Z, Nejati V, Ekhtiari H. Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. J Atten Disord. 2015 Dec 20. [Epub ahead of print].

  85. Bandeira ID, Guimaraes RS, Jagersbacher JG, et al. Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study. J Child Neurol. 2016;31(7):918–24. This open-label study showed that tDCS therapy increased processing speed and stimulus detection, and enhanced the ability to switch tasks in 9 children with ADHD.

    Article  PubMed  Google Scholar 

  86. Munz MT, Prehn-Kristensen A, Thielking F, Molle M, Goder R, Baving L. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder. Front Cell Neurosci. 2015;9:307.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liebetanz D, Klinker F, Hering D, et al. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia. 2006;47(7):1216–24.

    Article  PubMed  Google Scholar 

  88. Dhamne SC, Ekstein D, Zhuo Z, et al. Acute seizure suppression by transcranial direct current stimulation in rats. Ann Clin Transl Neurol. 2015;2(8):843–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shelyakin AM, Preobrazhenskaya IG, Kassil MV, Bogdanov OV. The effects of transcranial micropolarization on the severity of convulsive fits in children. Neurosci Behav Physiol. 2001;31(5):555–60.

    Article  CAS  PubMed  Google Scholar 

  90. Auvichayapat N, Rotenberg A, Gersner R, et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul. 2013;6(4):696–700. A study of 36 children with focal epilepsy showed that cathodal tDCS is well-tolerated, and improves EEG.

    Article  PubMed  Google Scholar 

  91. Yook SW, Park SH, Seo JH, Kim SJ, Ko MH. Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient: a case report. Ann Rehabil Med. 2011;35(4):579–82.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Faria P, Fregni F, Sebastiao F, Dias AI, Leal A. Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy. Epilepsy Behav. 2012;25(3):417–25.

    Article  PubMed  Google Scholar 

  93. Aree-uea B, Auvichayapat N, Janyacharoen T, et al. Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation. J Med Assoc Thai. 2014;97(9):954–62.

    PubMed  Google Scholar 

  94. Grecco LA, Duarte NA, Zanon N, Galli M, Fregni F, Oliveira CS. Effect of a single session of transcranial direct-current stimulation on balance and spatiotemporal gait variables in children with cerebral palsy: a randomized sham-controlled study. Braz J Phys Ther. 2014;18(5):419–27.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Grecco LA, de Almeida Carvalho Duarte N, Mendonca ME, et al. Transcranial direct current stimulation during treadmill training in children with cerebral palsy: a randomized controlled double-blind clinical trial. Res Dev Disabil. 2014;35(11):2840–8.

    Article  PubMed  Google Scholar 

  96. Duarte Nde A, Grecco LA, Galli M, Fregni F, Oliveira CS. Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: a double-blind randomized controlled trial. PLoS One. 2014;9(8), e105777.

    Article  PubMed  Google Scholar 

  97. Lazzari RD, Politti F, Santos CA, et al. Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial. J Phys Ther Sci. 2015;27(3):763–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Collange Grecco LA, de Almeida Carvalho Duarte N, Mendonca ME, Galli M, Fregni F, Oliveira CS. Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial. Clin Rehabil. 2015;29(12):1212–23.

    Article  PubMed  Google Scholar 

  99. An S, Yang JW, Sun H, Kilb W, Luhmann HJ. Long-term potentiation in the neonatal rat barrel cortex in vivo. J Neurosci. 2012;32(28):9511–6.

    Article  CAS  PubMed  Google Scholar 

  100. Cao G, Harris KM. Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat. J Neurophysiol. 2012;107(3):902–12.

    Article  CAS  PubMed  Google Scholar 

  101. Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015;15(5):27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol. 2009;5(7):380–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sanchez RM, Jensen FE. Maturational aspects of epilepsy mechanisms and consequences for the immature brain. Epilepsia. 2001;42(5):577–85.

    Article  CAS  PubMed  Google Scholar 

  104. Silverstein FS, Jensen FE. Neonatal seizures. Ann Neurol. 2007;62(2):112–20.

    Article  PubMed  Google Scholar 

  105. Mix A, Hoppenrath K, Funke K. Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Dev Neurobiol. 2015;75(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  106. Rosa MA, Picarelli H, Teixeira MJ, Rosa MO, Marcolin MA. Accidental seizure with repetitive transcranial magnetic stimulation. J ECT. 2006;22(4):265–6.

    Article  PubMed  Google Scholar 

  107. Sui L, Huang S, Peng B, Ren J, Tian F, Wang Y. Deep brain stimulation of the amygdala alleviates fear conditioning-induced alterations in synaptic plasticity in the cortical-amygdala pathway and fear memory. J Neural Transm. 2014;121(7):773–82.

    Article  PubMed  Google Scholar 

  108. Tawfik VL, Chang SY, Hitti FL, et al. Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes. Neurosurgery. 2010;67(2):367–75.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chaieb L, Antal A, Paulus W. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Front Neurosci. 2015;9:125.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529–40.

    Article  CAS  PubMed  Google Scholar 

  111. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-107:1–16.

    Article  PubMed  Google Scholar 

  112. Blanke ML, VanDongen AMJ. Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM, ed. Biology of the NMDA Receptor, Chapter 13. Boca Raton (FL): CRC Press/Taylor & Francis; 2009.

  113. Hanson E, Armbruster M, Cantu D, et al. Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex. Glia. 2015;63(10):1784–96.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sanchez RM, Jensen FE. Modeling hypoxia-induced seizures and hypoxic encephalopathy in the neonatal period. In: Pitkanen A, Moshe SL, Schwartzkroin PA, editors. Models of seizures and epilepsy. San Diego: Elsevier; 2006.

    Google Scholar 

  115. Avallone J, Gashi E, Magrys B, Friedman LK. Distinct regulation of metabotropic glutamate receptor (mGluR1 alpha) in the developing limbic system following multiple early-life seizures. Exp Neurol. 2006;202(1):100–11.

    Article  CAS  PubMed  Google Scholar 

  116. Sun Y, Lipton JO, Boyle LM, et al. Direct current stimulation induces mGluR5-dependent neocortical plasticity. Ann Neurol. 2016;80(2):233–46.

  117. Danbolt NC, Storm-Mathisen J, Kanner BI. An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience. 1992;51(2):295–310.

    Article  CAS  PubMed  Google Scholar 

  118. Lehre KP, Danbolt NC. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci. 1998;18(21):8751–7.

    CAS  PubMed  Google Scholar 

  119. Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci. 1997;9(8):1646–55.

    Article  CAS  PubMed  Google Scholar 

  120. Amadi U, Allman C, Johansen-Berg H, Stagg CJ. The homeostatic interaction between anodal transcranial direct current stimulation and motor learning in humans is related to GABAA activity. Brain Stimul. 2015;8(5):898–905.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Swann JW, Brady RJ, Martin DL. Postnatal development of GABA-mediated synaptic inhibition in rat hippocampus. Neuroscience. 1989;28(3):551–61.

    Article  CAS  PubMed  Google Scholar 

  122. Plotkin MD, Snyder EY, Hebert SC, Delpire E. Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA's excitatory role in immature brain. J Neurobiol. 1997;33(6):781–95.

    Article  CAS  PubMed  Google Scholar 

  123. Rivera C, Voipio J, Payne JA, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999;397(6716):251–5.

    Article  CAS  PubMed  Google Scholar 

  124. Ganguly K, Schinder AF, Wong ST, Poo M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell. 2001;105(4):521–32.

    Article  CAS  PubMed  Google Scholar 

  125. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 1995;15(6):1287–98.

    Article  CAS  PubMed  Google Scholar 

  126. Labedi A, Benali A, Mix A, Neubacher U, Funke K. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent. Brain Stimul. 2014;7(3):394–400.

    Article  PubMed  Google Scholar 

  127. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985;14(2):375–403.

    Article  CAS  PubMed  Google Scholar 

  128. Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crepel V. Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci. 2005;25(36):8229–39.

    Article  CAS  PubMed  Google Scholar 

  129. Nitecka L, Tremblay E, Charton G, Bouillot JP, Berger ML, Ben-Ari Y. Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience. 1984;13(4):1073–94.

    Article  CAS  PubMed  Google Scholar 

  130. Tremblay E, Nitecka L, Berger ML, Ben-Ari Y. Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations. Neuroscience. 1984;13(4):1051–72.

    Article  CAS  PubMed  Google Scholar 

  131. Ben-Ari Y. The developing cortex. Handb Clin Neurol. 2013;111:417–26.

    Article  PubMed  Google Scholar 

  132. Braat S, Kooy RF. The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron. 2015;86(5):1119–30.

    Article  CAS  PubMed  Google Scholar 

  133. Carvill GL, Weckhuysen S, McMahon JM, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82(14):1245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Talos DM, Sun H, Kosaras B, et al. Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann Neurol. 2012;71(4):539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. He Q, Nomura T, Xu J, Contractor A. The developmental switch in GABA polarity is delayed in fragile X mice. J Neurosci. 2014;34(2):446–50.

    Article  CAS  PubMed  Google Scholar 

  136. Tyzio R, Nardou R, Ferrari DC, et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science. 2014;343(6171):675–9.

    Article  CAS  PubMed  Google Scholar 

  137. Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res. 2015;167(1-3):42–56.

  138. Lomo T. The discovery of long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003;358(1432):617–20.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol. 1994;4(3):389–99.

    Article  CAS  PubMed  Google Scholar 

  140. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.

    Article  CAS  PubMed  Google Scholar 

  141. Nitsche MA, Paulus W. Transcranial direct current stimulation--update 2011. Restor Neurol Neurosci. 2011;29(6):463–92.

    PubMed  Google Scholar 

  142. Kirkwood A, Silva A, Bear MF. Age-dependent decrease of synaptic plasticity in the neocortex of alphaCaMKII mutant mice. Proc Natl Acad Sci U S A. 1997;94(7):3380–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dudek SM, Bear MF. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci. 1993;13(7):2910–8.

    CAS  PubMed  Google Scholar 

  144. Lante F, Cavalier M, Cohen-Solal C, Guiramand J, Vignes M. Developmental switch from LTD to LTP in low frequency-induced plasticity. Hippocampus. 2006;16(11):981–9.

    Article  CAS  PubMed  Google Scholar 

  145. Oberman LM, Ifert-Miller F, Najib U, et al. Abnormal mechanisms of plasticity and metaplasticity in autism spectrum disorders and fragile X syndrome. J Child Adolesc Psychopharmacol. 2016;26(7):617-24

  146. Froemke RC. Plasticity of cortical excitatory-inhibitory balance. Annu Rev Neurosci. 2015;38:195–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. Prog Brain Res. 2013;207:3–34.

    Article  PubMed  Google Scholar 

  148. Gersner R, Kaye HL, Oberman L, et al. Safety and tolerability of transcranial magnetic stimulation for motor and language mapping in children with epilepsy. 6th International Conference on Transcranial Brain Stimulation; 2016; Göttingen, Germany.

Download references

Acknowledgements

This work was supported by NIMH R01100186 (Alexander Rotenberg, Alvaro Pascual-Leone, Lindsay M. Oberman) and grants from the Boston Children’s Hospital Translational Research Program (Alexander Rotenberg). Alexander Rotenberg receives support form NIH NINDS R01NS088583, The Assimon Family Foundation, Sage Pharmaceuticals, Eisai Pharmaceuticals, Massachusetts Life Sciences, Neuroelectrics, and Brainsway. Alvaro Pascual-Leone was supported in part by the Sidney R. Baer Jr. Foundation, the NIH (R21 NS082870, R01HD069776, R01NS073601, R21 MH099196, R21 NS085491, R21 HD07616), Harvard Catalyst and the Harvard Clinical and Translational Science Center (NCRR and the NCATS NIH, UL1 RR025758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rotenberg.

Ethics declarations

Conflict of Interest

Mustafa Q. Hameed, Sameer C. Dhamne, Roman Gersner, Harper L. Kaye, and Lindsay M. Oberman declare that they have no conflict of interest.

Alvaro Pascual-Leone has consulted for Nexstim, Neuronix, Starlab Neuroscience, Neuroelectrics, Magstim, Neosync and Axilum Robotics, and is a co-inventor of a patent for real-time integration of TMS, EEG and MRI.

Alexander Rotenberg is a co-founder and consults for Neuro’motion Inc., consults for NeuroRex Inc., and a co-inventor of a patent for real-time integration TMS and EEG. He also receives or has received research funding from Sage Pharmaceuticals, Eisai Pharmaceuticals, Neuropace, and Brainsway.

Human and Animal Rights and Informed Consent

In figure 1, unpublished preliminary human data is used to illustrate important points in the text. Data collection is being performed under a study protocol approved by the IRB at Boston Children's Hospital (IRB-P00020115). Informed consent was obtained from all subjects. We cite multiple other published papers by the authors, but do not report any new animal or human findings here.

Additional information

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, M.Q., Dhamne, S.C., Gersner, R. et al. Transcranial Magnetic and Direct Current Stimulation in Children. Curr Neurol Neurosci Rep 17, 11 (2017). https://doi.org/10.1007/s11910-017-0719-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0719-0

Keywords

Navigation