Emerging Approaches for Targeting Metabolic Vulnerabilities in Malignant Glioma

  • Peter M. Clark
  • Wilson X. Mai
  • Timothy F. Cloughesy
  • David A. NathansonEmail author
Neuro-oncology (L A Abrey, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-Oncology


Malignant gliomas are intractable and among the most lethal human malignancies. Like other cancers, metabolic reprogramming is a key feature of glioma and is thought to accommodate the heightened nutrient requirements for tumor cell proliferation, growth, and survival. This metabolic rewiring, driven by oncogenic signaling and molded by the unique environment of the brain, may impose vulnerabilities that could be exploited therapeutically for increased tumor control. In this review, we discuss the prominent metabolic features of malignant glioma, the key pathways regulating glioma metabolism, and the potential therapeutic opportunities for targeting metabolic processes.


Glioma Glioblastoma Metabolism Targeted therapy Glycolysis Molecular imaging 



This work was supported by the In Vivo Cellular and Molecular Imaging Center, National Cancer Institute P50 CA86306 (P.M.C. and D.A.N.), the Hasso Family Foundation (T.F.C. and D.A.N.), Art of the Brain (T.F.C.), and the National Science Foundation Graduate Research Fellowships Program DGE 1144087 (W.X.M.).

Compliance with Ethical Standards

Conflict of Interest

Peter M. Clark declares no potential conflicts of interest.

Wilson X. Mai has a patent Targeting Metabolic Vulnerabilities in Cancer pending.

Timothy F. Cloughesy reports personal fees from Roche/Genentech, personal fees from Novartis, personal fees from Celgene, personal fees from Tocagen, personal fees from VBL, personal fees from NewGen, personal fees from Oxigene, personal fees from Amgen, personal fees from Nektar, personal fees from Upshire Smith, personal fees from AbbVie, and personal fees from Notable Labs.

David A. Nathanson has a patent Targeting Metabolic Vulnerabilities in Cancer pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi: 10.1056/NEJMra0708126.CrossRefPubMedGoogle Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi: 10.1056/NEJMoa043330.CrossRefPubMedGoogle Scholar
  3. 3.
    Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8. doi: 10.1038/nature07385.
  4. 4.
    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. doi: 10.1016/j.cell.2013.09.034.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Prados MD, Byron SA, Tran NL, Phillips JJ, Molinaro AM, Ligon KL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-oncology. 2015;17(8):1051–63. doi: 10.1093/neuonc/nov031.CrossRefPubMedGoogle Scholar
  6. 6.
    Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL, et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2012;2(5):458–71. doi: 10.1158/2159-8290.CD-11-0284.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I, et al. De-repression of PDGFRbeta transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013;3(5):534–47. doi: 10.1158/2159-8290.CD-12-0502.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343(6166):72–6. doi: 10.1126/science.1241328.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Hamanaka RB, Chandel NS. Targeting glucose metabolism for cancer therapy. J Exp Med. 2012;209(2):211–5. doi: 10.1084/jem.20120162.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427–33. doi: 10.1016/j.tibs.2010.05.003.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Jelluma N, Yang X, Stokoe D, Evan GI, Dansen TB, Haas-Kogan DA. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res MCR. 2006;4(5):319–30. doi: 10.1158/1541-7786.MCR-05-0061.CrossRefPubMedGoogle Scholar
  12. 12.
    Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8:589. doi: 10.1038/msb.2012.20.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kennedy CR, Tilkens SB, Guan H, Garner JA, Or PM, Chan AM. Differential sensitivities of glioblastoma cell lines towards metabolic and signaling pathway inhibitions. Cancer Lett. 2013;336(2):299–306. doi: 10.1016/j.canlet.2013.03.020.CrossRefPubMedGoogle Scholar
  14. 14.
    Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 2015;129(1):115–31. doi: 10.1007/s00401-014-1352-5.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Oudard S, Arvelo F, Miccoli L, Apiou F, Dutrillaux AM, Poisson M, et al. High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer. 1996;74(6):839–45.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, Sarcar B, Kahali S, et al. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res. 2012;72(22):5878–88. doi: 10.1158/0008-5472.CAN-12-1572-T.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16(10):1373–82. doi: 10.1038/nn.3510.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 2007;18(4):1437–46. doi: 10.1091/mbc.E06-07-0593.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4(12):988–1004. doi: 10.1038/nrd1902.CrossRefPubMedGoogle Scholar
  20. 20.
    Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15(11):1406–18. doi: 10.1101/gad.889901.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208(2):313–26. doi: 10.1084/jem.20101470.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.CrossRefPubMedGoogle Scholar
  23. 23.
    Parmenter TJ, Kleinschmidt M, Kinross KM, Bond ST, Li J, Kaadige MR, et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov. 2014;4(4):423–33. doi: 10.1158/2159-8290.CD-13-0440.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501. doi: 10.1038/nrc839.CrossRefPubMedGoogle Scholar
  25. 25.
    Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P, et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol. 2008;18(17):1269–77. doi: 10.1016/j.cub.2008.07.078.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85. doi: 10.1016/j.cmet.2006.02.002.CrossRefPubMedGoogle Scholar
  27. 27.•
    Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013;18(5):726–39. doi: 10.1016/j.cmet.2013.09.013. The authors show that mTORC2, a central signaling node downstream of RTK-PI3K signaling, can regulate GBM glycolytic flux further demonstrating a critical link between aberrant signal transduction and tumor metabolism.CrossRefPubMedGoogle Scholar
  28. 28.
    Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-Oncology. 2010;12(11):1102–12. doi: 10.1093/neuonc/noq080.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452(7184):230–3. URL:
  30. 30.
    Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452(7184):181–6. URL:
  31. 31.
    Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2009;2(97):ra73. doi: 10.1126/scisignal.2000431.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD, et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci USA. 2012;109(18):6904–9. doi: 10.1073/pnas.1204176109.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell. 2015;57(1):95–107. doi: 10.1016/j.molcel.2014.10.027.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334(6060):1278–83. doi: 10.1126/science.1211485.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kung C, Hixon J, Choe S, Marks K, Gross S, Murphy E, et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem Biol. 2012;19(9):1187–98. doi: 10.1016/j.chembiol.2012.07.021.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206(Pt 12):2049–57.CrossRefPubMedGoogle Scholar
  37. 37.
    Tsao TS, Burcelin R, Charron MJ. Regulation of hexokinase II gene expression by glucose flux in skeletal muscle. J Biol Chem. 1996;271(25):14959–63.CrossRefPubMedGoogle Scholar
  38. 38.••
    Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24(2):213–28. doi: 10.1016/j.ccr.2013.06.014. Using global hexokinase 2 knockout mice, this paper demonstrated that elimination of hexokinase 2 has profound therapeutic effects on tumor metabolism and growth, without apparent adverse effects on mouse physiology.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Xu Y, Liu X-H, Saunders M, Pearce S, Foulks JM, Parnell KM, et al. Discovery of 3-(trifluoromethyl)-1H-pyrazole-5-carboxamide activators of the M2 isoform of pyruvate kinase (PKM2). Bioorg Med Chem Lett. 2014;24(2):515–9. doi: 10.1016/j.bmcl.2013.12.028.CrossRefPubMedGoogle Scholar
  40. 40.
    Parnell KM, Foulks JM, Nix RN, Clifford A, Bullough J, Luo B, et al. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol Cancer Ther. 2013;12(8):1453–60. doi: 10.1158/1535-7163.MCT-13-0026.CrossRefPubMedGoogle Scholar
  41. 41.
    Guo C, Linton A, Jalaie M, Kephart S, Ornelas M, Pairish M, et al. Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators. Bioorg Med Chem Lett. 2013;23(11):3358–63. doi: 10.1016/j.bmcl.2013.03.090.CrossRefPubMedGoogle Scholar
  42. 42.
    Boxer MB, Jiang J-K, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, et al. Evaluation of substituted N, N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J Med Chem. 2010;53(3):1048–55. doi: 10.1021/jm901577g.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Walsh MJ, Brimacombe KR, Veith H, Bougie JM, Daniel T, Leister W, et al. 2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 2011;21(21):6322–7. doi: 10.1016/j.bmcl.2011.08.114.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    J-k J, Boxer MB, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, et al. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 2010;20(11):3387–93. doi: 10.1016/j.bmcl.2010.04.015.CrossRefGoogle Scholar
  45. 45.
    Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8(10):839–47. doi: 10.1038/nchembio.1060.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Bluemlein K, Grüning N-M, Feichtinger RG, Lehrach H, Kofler B, Ralser M. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. 2011Google Scholar
  47. 47.
    Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2009;27(7):1082–6. doi: 10.1200/jco.2008.19.1098.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, et al. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neuro-Oncol. 2014;117(1):125–31. doi: 10.1007/s11060-014-1362-0.CrossRefGoogle Scholar
  49. 49.
    Rieger J, Bahr O, Maurer GD, Hattingen E, Franz K, Brucker D, et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;44(6):1843–52. doi: 10.3892/ijo.2014.2382.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Stafford P, Abdelwahab MG, do Kim Y, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond). 2010;7:74. doi: 10.1186/1743-7075-7-74.CrossRefGoogle Scholar
  51. 51.
    Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, et al. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One. 2012;7(5), e36197. doi: 10.1371/journal.pone.0036197.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Maurer GD, Brucker DP, Bähr O, Harter PN, Hattingen E, Walenta S, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer. 2011;11:315. doi: 10.1186/1471-2407-11-315.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–37. doi: 10.1016/j.cmet.2012.05.001.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Matés JM, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci. 2011;108(21):8674–9. doi: 10.1073/pnas.1016627108.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, et al. Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed. 2012;25(11):1234–44. doi: 10.1002/nbm.2794.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36(10):587–97. doi: 10.1016/j.tins.2013.07.001.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.••
    Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159(7):1603–14. doi: 10.1016/j.cell.2014.11.025. Using 13C-NMR analysis of patient-derived mouse orthotopic brain tumor, this elegant study demonstrates for the first time that GBM consume and oxidize acetate as an energetic substrate. This paper also shows, in their models, that GBM tumors do not oxidize consumed glutamine.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Janiszewska M, Suva ML, Riggi N, Houtkooper RH, Auwerx J, Clement-Schatlo V, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 2012;26(17):1926–44. doi: 10.1101/gad.188292.112.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12. doi: 10.1126/science.1164382.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C. Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PloS One. 2011;6(5), e19868. doi: 10.1371/journal.pone.0019868.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2010;465(7300):966. doi: 10.1038/nature09132.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Birner P, Pusch S, Christov C, Mihaylova S, Toumangelova-Uzeir K, Natchev S, et al. Mutant IDH1 inhibits PI3K/Akt signaling in human glioma. Cancer. 2014;120(16):2440–7. doi: 10.1002/cncr.28732.CrossRefPubMedGoogle Scholar
  63. 63.•
    Fu X, Chin RM, Vergnes L, Hwang H, Deng G, Xing Y, et al. 2-Hydroxyglutarate inhibits ATP synthase and mTOR signaling. Cell Metab. 2015;22(3):508–15. doi: 10.1016/j.cmet.2015.06.009. This work demonstrated that the oncometabolite, 2-HG, can inhibit ATP synthase and mTOR in glioma cells.CrossRefPubMedGoogle Scholar
  64. 64.
    Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD, Chan JA, et al. Lactate dehydrogenase a silencing in IDH mutant gliomas. Neuro-oncology. 2014;16(5):686–95. doi: 10.1093/neuonc/not243.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Izquierdo-Garcia JL, Viswanath P, Eriksson P, Cai L, Radoul M, Chaumeil MM, et al. IDH1 mutation induces reprogramming of pyruvate metabolism. Cancer Res. 2015;75(15):2999–3009. doi: 10.1158/0008-5472.CAN-15-0840.CrossRefPubMedGoogle Scholar
  66. 66.
    Ohka F, Ito M, Ranjit M, Senga T, Motomura A, Motomura K, et al. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(6):5911–20. doi: 10.1007/s13277-014-1784-5.CrossRefGoogle Scholar
  67. 67.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30. doi: 10.1016/j.ccr.2010.12.014.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324(5924):261–5. doi: 10.1126/science.1170944.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483(7390):484–8. doi: 10.1038/nature10898.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2(31):31ra4. doi: 10.1126/scitranslmed.3000677.CrossRefGoogle Scholar
  71. 71.
    Garon E, Christofk H, Hosmer W, Britten C, Bahng A, Crabtree M, et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2014;140(3):443–52. doi: 10.1007/s00432-014-1583-9.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Davis M, Pragani R, Popovici-Muller J, Gross S, Thorne N, Salituro F, et al. ML309: a potent inhibitor of R132H mutant IDH1 capable of reducing 2-hydroxyglutarate production in U87 MG glioblastoma cells. Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD); 2010.Google Scholar
  73. 73.
    Zheng B, Yao Y, Liu Z, Deng L, Anglin JL, Jiang H, et al. Crystallographic investigation and selective inhibition of mutant isocitrate dehydrogenase. ACS Med Chem Lett. 2013;4(6):542–6. doi: 10.1021/ml400036z.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.••
    Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340(6132):626–30. doi: 10.1126/science.1236062. Genomic studies of GBM suggest that mutant IDH1 may drive GBM growth and survival. This paper identifies a selective inhibitor of mutant IDH1 which blocks the growth of IDH1-mutant, but importantly not IDH1-wild-type, tumors.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Deng G, Shen J, Yin M, McManus J, Mathieu M, Gee P, et al. Selective inhibition of mutant isocitrate dehydrogenase 1 (IDH1) via disruption of a metal binding network by an allosteric small molecule. J Biol Chem. 2015;290(2):762–74. doi: 10.1074/jbc.M114.608497.PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Wu F, Jiang H, Zheng B, Kogiso M, Yao Y, Zhou C, et al. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J Med Chem. 2015;58(17):6899–908. doi: 10.1021/acs.jmedchem.5b00684.CrossRefPubMedGoogle Scholar
  77. 77.
    Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA, Stap J, et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res. 2015. doi: 10.1158/0008-5472.CAN-14-3603.PubMed.PubMedGoogle Scholar
  78. 78.
    Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM, Dang J, et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci U S A. 2009;106(31):12932–7. doi: 10.1073/pnas.0906606106.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal. 2009;2(101):ra82. doi: 10.1126/scisignal.2000446.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG, et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 2013;73(9):2850–62. doi: 10.1158/0008-5472.CAN-13-0382-T.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S America. 2000;97(16):9226–33.CrossRefGoogle Scholar
  82. 82.
    Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45(10):1653–9.PubMedGoogle Scholar
  83. 83.
    Schiepers C, Chen W, Cloughesy T, Dahlbom M, Huang SC. 18F-FDOPA kinetics in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48(10):1651–61. doi: 10.2967/jnumed.106.039321.Google Scholar
  84. 84.
    Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, Wise DR, et al. PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J Nucl Med Off Publ Soc Nucl Med. 2011;52(12):1947–55. doi: 10.2967/jnumed.111.093815.Google Scholar
  86. 86.
    Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Transl Med. 2015;7(274):274ra17. doi: 10.1126/scitranslmed.aaa1009.CrossRefGoogle Scholar
  87. 87.
    Horska A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293–310. doi: 10.1016/j.nic.2010.04.003.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Kwock L, Smith JK, Castillo M, Ewend MG, Collichio F, Morris DE, et al. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7(10):859–68. doi: 10.1016/S1470-2045(06)70905-6.CrossRefPubMedGoogle Scholar
  89. 89.
    Kalinina J, Carroll A, Wang L, Yu Q, Mancheno DE, Wu S, et al. Detection of “oncometabolite” 2-hydroxyglutarate by magnetic resonance analysis as a biomarker of IDH1/2 mutations in glioma. J Mol Med (Berl). 2012;90(10):1161–71. doi: 10.1007/s00109-012-0888-x.CrossRefGoogle Scholar
  90. 90.
    Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9. doi: 10.1038/nm.2682.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med. 2012;4(116):116ra4. doi: 10.1126/scitranslmed.3002693.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Pope WB, Prins RM, Albert Thomas M, Nagarajan R, Yen KE, Bittinger MA, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neuro-Oncol. 2012;107(1):197–205. doi: 10.1007/s11060-011-0737-8.CrossRefGoogle Scholar
  93. 93.
    Elkhaled A, Jalbert LE, Phillips JJ, Yoshihara HA, Parvataneni R, Srinivasan R, et al. Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med. 2012;4(116ra5):116. doi: 10.1126/scitranslmed.3002796.Google Scholar
  94. 94.
    Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell. 2013;23(3):302–15. doi: 10.1016/j.ccr.2013.02.003.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Peter M. Clark
    • 1
    • 5
  • Wilson X. Mai
    • 1
    • 2
  • Timothy F. Cloughesy
    • 3
    • 4
  • David A. Nathanson
    • 1
    • 2
    Email author
  1. 1.Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUSA
  2. 2.Ahmanson Translational Imaging DivisionDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUSA
  3. 3.Department of NeurologyDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUSA
  4. 4.Henry Singleton Brain Tumor Program, Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesUSA
  5. 5.Crump Institute for Molecular Imaging, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations