Metabolic Myoglobinuria

  • Emanuele Barca
  • Valentina Emmanuele
  • Salvatore (Billi) DiMauro
Nerve and Muscle (LH Weimer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nerve and Muscle

Abstract

One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.

Keywords

Muscle glycogenoses Fatty acid oxidation (FAO) Mitochondrial myopathies ATP shortage Myoglobinuria treated with hydration or renal dialysis Uncertain therapy for metabolic myopathies 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Hed R, Larsson H, Wahlgren F. Acute myoglobinuria: report of a case with fatal outcome. Acta Med Scand. 1955;152:959–63.Google Scholar
  2. 2.
    Mochel F, Knight MA, Tong W-H, et al. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet. 2008;82:652–60.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Kagen LJ. Myoglobin: biochemical, physiological, and clinical aspects. New York: Columbia University Press; 1973.Google Scholar
  4. 4.
    Bywaters EG. Ischemic muscle necrosis. JAMA. 1944;124.Google Scholar
  5. 5.
    Kanno T, Sudo K, Maekawa M, Nishimura Y, Ukita M, Fukutaka K. Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin Chim Acta. 1988;173:89–98.CrossRefPubMedGoogle Scholar
  6. 6.
    Ogasahara S, Engel AG, Frens D, Mack D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A. 1989;86:2379–82.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Sobreira C, Hirano M, Shanske S, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 1997;48:1238–43.CrossRefPubMedGoogle Scholar
  8. 8.
    Di Giovanni S, Mirabella M, Spinazzola A, et al. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology. 2001;57:515–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Angelini C, Fanin M, Pegoraro E, Freda MP, Cadadini M, Martinello F. Clinical-molecular correlation in 104 mild X-linked muscular dystrophy patients: characterization of sub-clinical phenotypes. Neuromuscul Disord. 1994;4:349–58.CrossRefPubMedGoogle Scholar
  10. 10.
    Garrood P, Eagle M, Jrdine PE, Straub V. Myoglobinuria in boys with Duchenne muscular dystrophy on corticosteroid therapy. Neuromuscul Disord. 2008;18:71–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Pena L, Kim K, Charow J. Episodic myoglobinuria in a primary gamma-sarcoglycanopathy. Neuromuscul Disord. 2010;20:337–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Cagliani R, Comi GP, Tancredi L, et al. Primary beta-sarcoglycanopathy manifesting as recurrent exercise-induced myoglobinuria. Neuromuscul Disord. 2001;11:389–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Lindberg C, Sixt C, Oldfors A. Episodes of exercise-induced dark urine and myalgia in LGMD 21. Acta Neurol Scand. 2012;125:285–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Aboumousa A, Hoogendijk JE, Charlton R, et al. Caveolinopathy—new mutations and additional symptoms. Neuromuscul Disord. 2008;18:572–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Lahoria R, Winder TL, Lui J, Al-Qwain MA, Milone M. ANO5 homozygous microdeletion causing myalgia and unprovoked rhabdomyolysis in an Arabic man. 2014;50:610–3.Google Scholar
  16. 16.•
    Dlamini N, Voermans NC, Lillis S, et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord. 2013;23:540–8. Dlamini and numerous European colleagues report an onslaught of patients with exercise-induced but often unprovoked episodes of myoglobinuria due to mutations in the ryanodine receptor 1 gene ( RYR1 ). These frequent patients distract attention from patients with metabolic myoglobinuria and, more often than not, from patients with malignant hyperthermia (MH). Google Scholar
  17. 17.
    Bricker DK, Taylor EB, Schell JC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;337:96–100.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10:13–33.PubMedGoogle Scholar
  19. 19.
    DiMauro S, Arnold S, Miranda AF, Rowland LP. McArdle disease: the mystery of reappearing phosphorylase activity in muscle culture. A fetal isoenzyme. Ann Neurol. 1978;3:60–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Roelofs RI, Engel WK, Chauvin PB. Histochemical phosphorylase activity in regenerating muscle fibers from myophosphorylase-deficient patients. Science. 1967;177:795–7.CrossRefGoogle Scholar
  21. 21.
    Mitsumoto H. McArdle disease: phosphorylase activity in regenerating muscle fibers. Neurology. 1979;29:258–62.CrossRefPubMedGoogle Scholar
  22. 22.•
    Preisler N, Orngreen MC, Echaniz-Laguna A, et al. Muscle phosphorylase kinase deficiency. A neutral metabolic variant or a disease? Neurology. 2012;78:265–8. Preisler et al. call attention to phosphorylase b kinase (PhK) deficiency, which cannot simulate McArdle disease by failing to produce flat ischemic forearm exercise or to show second wind, but increasing muscle glycogen and by causing in men exercise-related myalgia and occasional myoglobinuria. CrossRefPubMedGoogle Scholar
  23. 23.
    Stojkovic T, Vissing J, Petit F, et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009;361:425–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med. 1991;324:364–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62:82–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Argov Z, Bank WJ. Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Ann Neurol. 1991;30:90–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Agamanolis DP, Askari AD, DiMauro S, et al. Muscle phosphofructokinase deficiency: two cases with unusual polysaccharide accumulation and immunologically active enzyme protein. Muscle Nerve. 1980;3:456–67.CrossRefPubMedGoogle Scholar
  28. 28.
    Raben N, Danon MJ, Lu N, et al. Surprises of genetic engineering: a possible model of polyglucosan body disease. Neurology. 2001;56:1739–45.CrossRefPubMedGoogle Scholar
  29. 29.
    Kreuder J, Borkhardt A, Repp R, et al. Inherited metabolic myopathy and hemolysis due to a mutation in aldolase A. N Engl J Med. 1996;334:1100–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Yao DC, Tolan DR, Murray MF, et al. Hemolytic anemia and severe rhabdomyolysis caused by compound heterozygous mutations of the gene for erythrocyte/muscle isozyme of aldolase. Blood. 2004;103:2401–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Spiegel R, Area Gomez E, Akman HO, Krishna S, Horovitz Y, DiMauro S. Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromuscul Disord. 2009;19:207–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Sotiriou E, Greene P, Krishna S, Hirano M, DiMauro S. Myopathy and Parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve. 2010;41:707–10.PubMedGoogle Scholar
  33. 33.
    DiMauro S, Spiegel R. Progress and problems in muscle glycogenoses. Acta Myol. 2011;30:96–102.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Kanno T, Sudo K, Takeuchi I, et al. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta. 1980;108:267–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Maekawa M, Sudo K, Kanno T, Li S. Molecular characterization of genetic mutation in human lactate dehydrogenase-A (M) deficiency. Biochem Biophys Res Commun. 1990;168:677–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Maekawa M, Sudo K, Kanno T, et al. A novel mutation of lactate dehydrogenase A (M) gene in the fifth family with the enzyme deficiency. Hum Mol Genet. 1994;3:825–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Maekawa M, Sudo K, Li S, Kanno T. Analysis of genetic mutation in human lactate dehydrogenase-A (M) deficiency using DNA conformation polymorphism in combination with polyacrilamide gradient gel and silver staining. Biochem Biophys Res Commun. 1991;180:1083–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Tsujino S, Shanske S, Brownell A, Haller RG, DiMauro S. Molecular genetic studies of muscle lactate dehydrogenase deficiency in white patients. Ann Neurol. 1994;36:661–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Kollberg G, Tulinius M, Gilljam T, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med. 2007;357:1507–14.CrossRefPubMedGoogle Scholar
  40. 40.
    Cameron JM, Levandovskiy V, MacKay N, et al. Identification of a novel mutation in GSY1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol Genet Metab. 2009;98:378–82.CrossRefPubMedGoogle Scholar
  41. 41.•
    Sukigara S, Liang W-C, Komaki H, et al. Muscle glycogen storage disease 0 presenting recurrent syncope with weakness and myalgia. Neuromuscul Disord. 2012;22:162–5. Sukigara and coworkers illustrate a typical presentation of glycogen synthetase (GS1) deficiency, and lack of glycogen simulates a block of glycogenolysis with excessive glycogen (e.g., McArdle disease). Lack of a central muscle fuel impairs ATP production, increases mitochondrial abundance, and—paradoxically—gives a negative phosphorylase histochemical reaction. CrossRefPubMedGoogle Scholar
  42. 42.
    DiMauro S, DiMauro-Melis PM. Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science. 1973;182:929–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Bank WJ, DiMauro S, Bonilla E, Capuzzi DM, Rowland LP. A disorder of muscle lipid metabolism and myoglobinuria. Absence of carnitine palmityltransferase. N Engl J Med. 1975;292:443–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Britton CH, Schultz RA, Zhang B, Esser V, Foster DW, McGarry JD. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proc Natl Acad Sci U S A. 1995;92:1984–8.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Gellera C, Verderio E, Floridia G, et al. Assignment of the human carnitine palmitoyltransferase II gene (CPT1) to chromosome 1p32. Genomics. 1994;24:195–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Tonin P, Lewis P, Servidei S, DiMauro S. Metabolic causes of myoglobinuria. Ann Neurol. 1990;27:181–5.CrossRefPubMedGoogle Scholar
  47. 47.
    DiDonato S, Taroni F. Disorders of lipid metabolism. In: Engel AG, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 2004. p. 1587–621.Google Scholar
  48. 48.
    Kaufmann P, El-Schahawi M, DiMauro S. Carnitine palmitoyltransferase II deficiency: diagnosis by molecular analysis of blood. Mol Cell Biochem. 1997;174:237–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Montermini L, Wang H, Verderio E, Taroni F, DiDonato S, Finocchiaro G. Identification of 5′ regulatory regions of the human carnitine palmitoyltransferase II gene. Biochim Biophys Acta. 1994;1219:237–40.CrossRefPubMedGoogle Scholar
  50. 50.
    Roe CR, Yang B-Z, Brunengraber H, Roe DS, Wallace M, Garritson BK. Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology. 2008;71:260–4.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Bonnefont J-P, Bastin J, Behin A, Djouadi F. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med. 2009;360:838840.CrossRefGoogle Scholar
  52. 52.
    Ohashi Y, Hasegawa Y, Murayama K, et al. A new diagnostic test for VLCAD deficiency using immunohistochemistry. Neurology. 2004;62:2209–13.CrossRefPubMedGoogle Scholar
  53. 53.
    Laforet P, Acquaviva-Bourdain C, Rigal O, et al. Diagnostic assessment and long-term follow-up of 13 patients with very long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009;19:324–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Laforet P, Vianey-Saban C. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul Disord. 2010;20:693–700.CrossRefPubMedGoogle Scholar
  55. 55.
    DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006;18:636–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Andreu AL, Hanna MG, Reichmann H, et al. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med. 1999;341:1037–44.CrossRefPubMedGoogle Scholar
  57. 57.•
    Emmanuele V, Sotiriou E, Gutierrez Rios P, et al. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with MELAS syndrome. J Child Neurol. 2013;28:236–42. Emmanuele et al. showed a case of MELAS (mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes) syndrome in a girl with a rare MTCYB mutation, which is more often associated with sporadic myopathy, exercise intolerance, and often myoglobinuria. PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Keightley JA, Hoffbuhr KC, Burton MD, et al. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet. 1996;12:410–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Karadimas CL, Greenstein P, Sue CM, et al. Recurrent myoglobinuria due to a nonsense mutation in the COX I gene of mtDNA. Neurology. 2000;55:644–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Kollberg G, Moslemi A-R, Lindberg C, Holme E, Oldfors A. Mitochondrial myopathy and rhabdomyolysis associated with a novel nonsense mutation in the gene encoding cytochrome c oxidase subunit I. J Neuropathol Exp Neurol. 2005;64:123–8.PubMedGoogle Scholar
  61. 61.
    McFarland R, Taylor RW, Chinnery PF, Howell N, Turnbull DM. A novel sporadic mutation in cytochrome c oxidase subunit II as a cause of rhabdomyolysis. Neuromuscul Disord. 2004;14:162–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Haller RG, Henriksson KG, Jorfeldt L, et al. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. J Clin Invest. 1991;88:1197–206.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Hall RE, Henriksson KG, Lewis SF, Haller RG, Kennaway NG. Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron-sulfur proteins. J Clin Invest. 1993;92:2660–6.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Kollberg G, Melberg A, Holme E, Oldfors A. Transient restoration of succinate dehydrogenase activity after rhabdomyolysis in iron-sulfur cluster deficiency myopathy. Neuromuscul Disord. 2010;21:115–20.CrossRefPubMedGoogle Scholar
  65. 65.
    DiGiovanni S, Mirabella M, Papacci M, Odoardi F, Silvestri G, Servidei S. Apoptosis and ROS detoxification enzymes correlate with cytochrome c oxidase deficiency in mitochondrial encephalomyopathies. Mol Cell Neurosci. 2001;17:696–705.CrossRefGoogle Scholar
  66. 66.
    Lalani S, Vladutiu GD, Plunkett K, Lotze TE, Adesina AM, Scaglia F. Isolated mitochondrial myopathy associated with muscle coenzyme Q10 deficiency. Arch Neurol. 2005;62:317–20.CrossRefPubMedGoogle Scholar
  67. 67.
    Aure K, Benoist JF, Ogier de Baulny H, Romero NB, Rigal O, Lombes A. Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology. 2004;63:727–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Horvath R, Scneiderat P, Schoser BGH, et al. Coenzyme Q10 deficiency and isolated myopathy. Neurology. 2006;66:253–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Gempel K, Topaloglu H, Talim B, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130:2037–44.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Liang W-C, Ohkuma A, Hayashi YK, et al. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2009;19:212–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Ohkuma A, Noguchi S, Sugie H, et al. Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve. 2009;39:333–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Tein I, DiMauro S, DeVivo DC. Recurrent childhood myoglobinuria. Adv Pediatr. 1990;37:77–117.PubMedGoogle Scholar
  73. 73.
    Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in LPIN cause recurrent childhood myoglobinuria in childhood. Am J Hum Genet. 2008;83:489–94.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Rowland LP, Araki S, Carmel P. Contracture in McArdle’s disease. Arch Neurol. 1965;13:541–4.CrossRefPubMedGoogle Scholar
  75. 75.
    Haller RG, Vissing J. Functional evaluation of metabolic myopathies. In: Engel AG, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 2004. p. 665–79.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Emanuele Barca
    • 1
    • 2
    • 3
  • Valentina Emmanuele
    • 1
  • Salvatore (Billi) DiMauro
    • 4
  1. 1.Department of NeurologyColumbia UniversityNew YorkUSA
  2. 2.Department of NeurologyUniversity of MessinaMessinaItaly
  3. 3.Policlinico Universitario G. MartinoMessinaItaly
  4. 4.College of Physicians & SurgeonsColumbia University Medical CenterNew YorkUSA

Personalised recommendations