LRRK2 Pathways Leading to Neurodegeneration

  • Mark R. Cookson
Genetics (V Bonifati, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetics


Mutations in LRRK2 are associated with inherited Parkinson’s disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD.


Autophagy Genetics Kinase activity Mutations 



This research was supported by the Intramural Research Program of the NIH, National Institute on Aging. For reasons of space, I unfortunately was not able to quote all of the primary literature and apologize to those colleagues whose work is mentioned in other reviews and not included directly here.

Compliance with Ethics Guidelines

Conflict of Interest

Mark R. Cookson declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Foley AR, Menezes MP, Pandraud A, et al. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain. 2014;137:44–56. doi: 10.1093/brain/awt315.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Amin R, Ratjen F. Emerging drugs for cystic fibrosis. Expert Opin Emerg Drugs. 2014;19:143–55. doi: 10.1517/14728214.2014.882316.CrossRefPubMedGoogle Scholar
  3. 3.
    Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44:595–600. doi: 10.1016/j.neuron.2004.10.023.CrossRefPubMedGoogle Scholar
  5. 5.
    Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7. doi: 10.1016/j.neuron.2004.11.005.CrossRefPubMedGoogle Scholar
  6. 6.
    Funayama M, Hasegawa K, Ohta E, et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005;57:918–21. doi: 10.1002/ana.20484.CrossRefPubMedGoogle Scholar
  7. 7.
    Kay DM, Kramer P, Higgins D, et al. Escaping Parkinson’s disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov Disord. 2005;20:1077–8. doi: 10.1002/mds.20618.CrossRefPubMedGoogle Scholar
  8. 8.
    Bardien S, Lesage S, Brice A, Carr J. Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:501–8. doi: 10.1016/j.parkreldis.2010.11.008.CrossRefPubMedGoogle Scholar
  9. 9.
    Benamer HTS, de Silva R. LRRK2 G2019S in the North African population: a review. Eur Neurol. 2010;63:321–5. doi: 10.1159/000279653.CrossRefPubMedGoogle Scholar
  10. 10.
    Troiano AR, Elbaz A, Lohmann E, et al. Low disease risk in relatives of North African lrrk2 Parkinson disease patients. Neurology. 2010;75:1118–9. doi: 10.1212/WNL.0b013e3181f39a2e.CrossRefPubMedGoogle Scholar
  11. 11.
    Simón-Sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12. doi: 10.1038/ng.487.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7. doi: 10.1038/ng.485.CrossRefPubMedGoogle Scholar
  13. 13.
    Do CB, Tung JY, Dorfman E, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011;7, e1002141. doi: 10.1371/journal.pgen.1002141.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet. 2012;8, e1002548. doi: 10.1371/journal.pgen.1002548.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Singleton A, Hardy J. A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum Mol Genet. 2011;20:R158–62. doi: 10.1093/hmg/ddr358.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Mata IF, Wedemeyer WJ, Farrer MJ, et al. LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci. 2006;29:286–93. doi: 10.1016/j.tins.2006.03.006.CrossRefPubMedGoogle Scholar
  17. 17.
    West AB, Moore DJ, Biskup S, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102:16842–7. doi: 10.1073/pnas.0507360102.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Greggio E, Jain S, Kingsbury A, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis. 2006;23:329–41. doi: 10.1016/j.nbd.2006.04.001.CrossRefPubMedGoogle Scholar
  19. 19.
    Greggio E, Cookson MR. Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro. 2009. doi: 10.1042/AN20090007.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Smith WW, Pei Z, Jiang H, et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci. 2006;9:1231–3. doi: 10.1038/nn1776.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee BD, Shin J-H, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med. 2010;16:998–1000. doi: 10.1038/nm.2199.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Deng X, Dzamko N, Prescott A, et al. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol. 2011;7:203–5. doi: 10.1038/nchembio.538.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Göring S, Taymans J-M, Baekelandt V, Schmidt B. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond. Bioorg Med Chem Lett. 2014;24:4630–7. doi: 10.1016/j.bmcl.2014.08.049.CrossRefPubMedGoogle Scholar
  24. 24.
    Henderson JL, Kormos BL, Hayward MM, et al. Discovery and preclinical profiling of 3-[4-(Morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J Med Chem. 2014. doi: 10.1021/jm5014055.PubMedGoogle Scholar
  25. 25.
    Sheng Z, Zhang S, Bustos D, et al. Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med. 2012;4:164ra161. doi: 10.1126/scitranslmed.3004485.CrossRefPubMedGoogle Scholar
  26. 26.
    Yao C, Johnson WM, Gao Y, et al. Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Hum Mol Genet. 2012. doi: 10.1093/hmg/dds431.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Fuji RN, Flagella M, Baca M, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7:273ra15. doi: 10.1126/scitranslmed.aaa3634.CrossRefPubMedGoogle Scholar
  28. 28.
    Rudenko IN, Kaganovich A, Hauser DN, et al. The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson’s disease is a partial loss-of-function mutation. Biochem J. 2012;446:99–111. doi: 10.1042/BJ20120637.CrossRefPubMedGoogle Scholar
  29. 29.
    Rudenko IN, Chia R, Cookson MR. Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson’s disease? BMC Med. 2012;10:20. doi: 10.1186/1741-7015-10-20.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Li X, Wang QJ, Pan N, et al. Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson’s disease. PLoS ONE. 2011;6, e17153. doi: 10.1371/journal.pone.0017153.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Nichols RJ, Dzamko N, Morrice NA, et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J. 2010;430:393–404. doi: 10.1042/BJ20100483.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Chia R, Haddock S, Beilina A, et al. Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nat Commun. 2014;5:5827. doi: 10.1038/ncomms6827.CrossRefPubMedGoogle Scholar
  33. 33.
    Dzamko N, Inesta-Vaquera F, Zhang J, et al. The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS ONE. 2012;7, e39132. doi: 10.1371/journal.pone.0039132.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Lobbestael E, Zhao J, Rudenko IN, et al. Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochem J. 2013;456:119–28. doi: 10.1042/BJ20121772.CrossRefPubMedGoogle Scholar
  35. 35.
    Dzamko N, Deak M, Hentati F, et al. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J. 2010;430:405–13. doi: 10.1042/BJ20100784.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Skibinski G, Nakamura K, Cookson MR, Finkbeiner S. Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J Neurosci. 2014;34:418–33. doi: 10.1523/JNEUROSCI.2712-13.2014.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Marín I, van Egmond WN, van Haastert PJM. The Roco protein family: a functional perspective. FASEB J. 2008;22:3103–10. doi: 10.1096/fj.08-111310.CrossRefPubMedGoogle Scholar
  38. 38.
    Gasper R, Meyer S, Gotthardt K, et al. It takes two to tango: regulation of G proteins by dimerization. Nat Rev Mol Cell Biol. 2009;10:423–9. doi: 10.1038/nrm2689.CrossRefPubMedGoogle Scholar
  39. 39.
    Guo L, Gandhi PN, Wang W, et al. The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res. 2007;313:3658–70. doi: 10.1016/j.yexcr.2007.07.007.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Lewis PA, Greggio E, Beilina A, et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun. 2007;357:668–71. doi: 10.1016/j.bbrc.2007.04.006.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    West AB, Moore DJ, Choi C, et al. Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet. 2007;16:223–32. doi: 10.1093/hmg/ddl471.CrossRefPubMedGoogle Scholar
  42. 42.
    Stafa K, Trancikova A, Webber PJ, et al. GTPase activity and neuronal toxicity of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet. 2012;8, e1002526. doi: 10.1371/journal.pgen.1002526.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Liao J, Wu C-X, Burlak C, et al. Parkinson disease-associated mutation R1441H in LRRK2 prolongs the “active state” of its GTPase domain. Proc Natl Acad Sci U S A. 2014. doi: 10.1073/pnas.1323285111.Google Scholar
  44. 44.
    Li X, Tan Y-C, Poulose S, et al. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants. J Neurochem. 2007;103:238–47. doi: 10.1111/j.1471-4159.2007.04743.x.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Dzamko N, Zhou J, Huang Y, Halliday GM. Parkinson’s disease-implicated kinases in the brain; insights into disease pathogenesis. Front Mol Neurosci. 2014;7:57. doi: 10.3389/fnmol.2014.00057.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Xiong Y, Yuan C, Chen R, et al. ArfGAP1 is a GTPase activating protein for LRRK2: reciprocal regulation of ArfGAP1 by LRRK2. J Neurosci. 2012;32:3877–86. doi: 10.1523/JNEUROSCI.4566-11.2012.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Haebig K, Gloeckner CJ, Miralles MG, et al. ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2. PLoS ONE. 2010;5, e13762. doi: 10.1371/journal.pone.0013762.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Berger Z, Smith KA, Lavoie MJ. Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry. 2010;49:5511–23. doi: 10.1021/bi100157u.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Civiero L, Vancraenenbroeck R, Belluzzi E, et al. Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS ONE. 2012;7, e43472. doi: 10.1371/journal.pone.0043472.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Greggio E, Zambrano I, Kaganovich A, et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem. 2008;283:16906–14. doi: 10.1074/jbc.M708718200.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Ito G, Iwatsubo T. Re-examination of the dimerization state of leucine-rich repeat kinase 2: predominance of the monomeric form. Biochem J. 2012;441:987–94. doi: 10.1042/BJ20111215.CrossRefPubMedGoogle Scholar
  52. 52.
    Gotthardt K, Weyand M, Kortholt A, et al. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 2008;27:2239–49. doi: 10.1038/emboj.2008.150.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Korr D, Toschi L, Donner P, et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal. 2006;18:910–20. doi: 10.1016/j.cellsig.2005.08.015.CrossRefPubMedGoogle Scholar
  54. 54.
    Taymans J-M, Vancraenenbroeck R, Ollikainen P, et al. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS ONE. 2011;6, e23207. doi: 10.1371/journal.pone.0023207.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Liu M, Kang S, Ray S, et al. Kinetic, mechanistic, and structural modeling studies of truncated wild-type leucine-rich repeat kinase 2 and the G2019S mutant. Biochemistry. 2011;50:9399–408. doi: 10.1021/bi201173d.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Ray S, Bender S, Kang S, et al. The Parkinson disease-linked LRRK2 protein mutation I2020T stabilizes an active state conformation leading to increased kinase activity. J Biol Chem. 2014;289:13042–53. doi: 10.1074/jbc.M113.537811.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Sen S, Webber PJ, West AB. Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J Biol Chem. 2009;284:36346–56. doi: 10.1074/jbc.M109.025437.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Herzig MC, Kolly C, Persohn E, et al. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet. 2011;20:4209–23. doi: 10.1093/hmg/ddr348.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    MacLeod D, Dowman J, Hammond R, et al. The familial parkinsonism gene LRRK2 regulates neurite process morphology. Neuron. 2006;52:587–93. doi: 10.1016/j.neuron.2006.10.008.CrossRefPubMedGoogle Scholar
  60. 60.
    Dächsel JC, Behrouz B, Yue M, et al. A comparative study of Lrrk2 function in primary neuronal cultures. Parkinsonism Relat Disord. 2010;16:650–5. doi: 10.1016/j.parkreldis.2010.08.018.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Alegre-Abarrategui J, Christian H, Lufino MMP, et al. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet. 2009;18:4022–34. doi: 10.1093/hmg/ddp346.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006;60:557–69. doi: 10.1002/ana.21019.CrossRefPubMedGoogle Scholar
  63. 63.
    Higashi S, Biskup S, West AB, et al. Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Res. 2007;1155:208–19. doi: 10.1016/j.brainres.2007.04.034.CrossRefPubMedGoogle Scholar
  64. 64.
    Davies P, Hinkle KM, Sukar NN, et al. Comprehensive characterization and optimization of leucine rich repeat kinase 2 (LRRK2) monoclonal antibodies. Biochem J. 2013. doi: 10.1042/BJ20121742.Google Scholar
  65. 65.
    Kett LR, Boassa D, Ho CC-Y, et al. LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet. 2012;21:890–9. doi: 10.1093/hmg/ddr526.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Law BMH, Spain VA, Leinster VHL, et al. A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation. J Biol Chem. 2014;289:895–908. doi: 10.1074/jbc.M113.507913.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Caesar M, Zach S, Carlson CB, et al. Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration. Neurobiol Dis. 2013;54:280–8. doi: 10.1016/j.nbd.2012.12.019.CrossRefPubMedGoogle Scholar
  68. 68.•
    Tong Y, Giaime E, Yamaguchi H, et al. Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener. 2012;7:2. doi: 10.1186/1750-1326-7-2. This paper shows how phenotypes in LRRK2 knockout mice are affected by age. The exact interpretation of this data is not yet clear, but likely indicate that phenotypes are a mix of direct effect of loss of LRRK2 and compensatory changes in the same pathway.
  69. 69.
    Tong Y, Yamaguchi H, Giaime E, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A. 2010;107:9879–84. doi: 10.1073/pnas.1004676107.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Baptista MAS, Dave KD, Frasier MA, et al. Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. PLoS ONE. 2013;8, e80705. doi: 10.1371/journal.pone.0080705.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Manzoni C, Mamais A, Dihanich S, et al. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta. 2013;1833:2900–10. doi: 10.1016/j.bbamcr.2013.07.020.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.••
    Manzoni C, Mamais A, Dihanich S, et al. Pathogenic Parkinson’s disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochem Biophys Res Commun. 2013;441:862–6. doi: 10.1016/j.bbrc.2013.10.159. Along with companion paper 71, the study by Manzoni et al is one of the first to show consistent biochemical effects of LRRK2 mutations in an autophagy related pathway. Of interest, the direction of effect of mutations is opposite that of kinase inhibitors, supporting the idea that mutations have a gain of normal function.
  73. 73.
    Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2:107–17. doi: 10.1038/35052055.CrossRefPubMedGoogle Scholar
  74. 74.
    Dodson MW, Zhang T, Jiang C, et al. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet. 2012;21:1350–63. doi: 10.1093/hmg/ddr573.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Manzoni C, Denny P, Lovering R, Lewis PA. Computational analysis of the LRRK2 interactome. PeerJ. 2015;3, e778.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Porras P, Duesbury M, Fabregat A, et al. A visual review of the interactome of LRRK2: using deep-curated molecular interactions data to represent biology. Proteomics. 2015. doi: 10.1002/pmic.201400390.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Fenner BJ, Scannell M, Prehn JHM. Expanding the substantial interactome of NEMO using protein microarrays. PLoS ONE. 2010;5, e8799. doi: 10.1371/journal.pone.0008799.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Al-Mulla F, Bitar MS, Al-Maghrebi M, et al. Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3β. Cancer Res. 2011;71:1334–43. doi: 10.1158/0008-5472.CAN-10-3102.CrossRefPubMedGoogle Scholar
  79. 79.
    Tong Y, Ben-Shlomo A, Zhou C, et al. Pituitary tumor transforming gene 1 regulates Aurora kinase A activity. Oncogene. 2008;27:6385–95. doi: 10.1038/onc.2008.234.CrossRefPubMedGoogle Scholar
  80. 80.
    Reyniers L, Del Giudice MG, Civiero L, et al. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways. J Neurochem. 2014. doi: 10.1111/jnc.12798.PubMedGoogle Scholar
  81. 81.•
    Beilina A, Rudenko IN, Kaganovich A, et al. Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A. 2014. doi: 10.1073/pnas.1318306111. This paper, which is from my laboratory in collaboration with several other groups, indicates a potential relationship between LRRK2 and two proteins in GWAS-nominated regions for sporadic PD risk. Reference 90 also shows an interaction between LRRK2 and Rab7L1.
  82. 82.
    Hanafusa H, Ishikawa K, Kedashiro S, et al. Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nat Commun. 2011;2:158. doi: 10.1038/ncomms1161.CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Ishikawa K, Nara A, Matsumoto K, Hanafusa H. EGFR-dependent phosphorylation of leucine-rich repeat kinase LRRK1 is important for proper endosomal trafficking of EGFR. Mol Biol Cell. 2012;23:1294–306. doi: 10.1091/mbc.E11-09-0780.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Zheng X, Yang M, Tan J, et al. Screening of LRRK2 interactants by yeast 2-hybrid analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2008;33:883–91.PubMedGoogle Scholar
  85. 85.
    Kabbage M, Dickman MB. The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci. 2008;65:1390–402. doi: 10.1007/s00018-008-7535-2.CrossRefPubMedGoogle Scholar
  86. 86.
    Dächsel JC, Taylor JP, Mok SS, et al. Identification of potential protein interactors of Lrrk2. Parkinsonism Relat Disord. 2007;13:382–5. doi: 10.1016/j.parkreldis.2007.01.008.CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Helip-Wooley A, Thoene JG. Sucrose-induced vacuolation results in increased expression of cholesterol biosynthesis and lysosomal genes. Exp Cell Res. 2004;292:89–100.CrossRefPubMedGoogle Scholar
  88. 88.
    Eisenberg E, Greene LE. Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic. 2007;8:640–6. doi: 10.1111/j.1600-0854.2007.00568.x.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang CX, Engqvist-Goldstein AEY, Carreno S, et al. Multiple roles for cyclin G-associated kinase in clathrin-mediated sorting events. Traffic. 2005;6:1103–13. doi: 10.1111/j.1600-0854.2005.00346.x.CrossRefPubMedGoogle Scholar
  90. 90.•
    Macleod DA, Rhinn H, Kuwahara T, et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron. 2013;77:425–39. doi: 10.1016/j.neuron.2012.11.033. This paper, along with reference 81, showed that LRRK2 interacts with the GWAS candidate gene Rab7L1. In this paper, the authors also indicate an effect on VPS35, part of the retromer complex and a gene for inherited PD (see references 92 and 93).
  91. 91.
    Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol. 2012;14:29–37. doi: 10.1038/ncb2374.CrossRefGoogle Scholar
  92. 92.
    Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89:162–7. doi: 10.1016/j.ajhg.2011.06.001.CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89:168–75. doi: 10.1016/j.ajhg.2011.06.008.CrossRefPubMedCentralPubMedGoogle Scholar
  94. 94.••
    Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93. doi: 10.1038/ng.3043. This is the latest iteration of GWAS in PD, using data combined from many groups around the world and indicating that sporadic PD risk is influenced by more than twenty independent genetic factors.CrossRefPubMedCentralPubMedGoogle Scholar
  95. 95.
    Pandey AK, Williams RW. Genetics of gene expression in CNS. Int Rev Neurobiol. 2014;116:195–231. doi: 10.1016/B978-0-12-801105-8.00008-4.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Köroğlu Ç, Baysal L, Cetinkaya M, et al. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord. 2013;19:320–4. doi: 10.1016/j.parkreldis.2012.11.006.CrossRefPubMedGoogle Scholar
  97. 97.
    Edvardson S, Cinnamon Y, Ta-Shma A, et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE. 2012;7, e36458. doi: 10.1371/journal.pone.0036458.CrossRefPubMedCentralPubMedGoogle Scholar
  98. 98.
    Quadri M, Fang M, Picillo M, et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset parkinsonism. Hum Mutat. 2013;34:1208–15. doi: 10.1002/humu.22373.CrossRefPubMedGoogle Scholar
  99. 99.
    Krebs CE, Karkheiran S, Powell JC, et al. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive parkinsonism with generalized seizures. Hum Mutat. 2013;34:1200–7. doi: 10.1002/humu.22372.CrossRefPubMedCentralPubMedGoogle Scholar
  100. 100.
    Taymans J-M, Cookson MR. Mechanisms in dominant parkinsonism: the toxic triangle of LRRK2, alpha-synuclein, and tau. Bioessays. 2010;32:227–35. doi: 10.1002/bies.200900163.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  1. 1.Cell Biology and Gene Expression Section, Laboratory of NeurogeneticsNational Institute on AgingBethesdaUSA

Personalised recommendations