Advertisement

Gut Microbiome and Multiple Sclerosis

  • Pavan Bhargava
  • Ellen M. Mowry
Demyelinating Disorders (DN Bourdette and V Yadav, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Demyelinating Disorders

Abstract

The commensal flora that lives in the human gut is a unique ecosystem that has evolved over millennia with human beings. The importance of the microbiota in various bodily functions is gradually becoming more apparent. Besides the gut microbiome playing a role in bowel-related disorders, a role in metabolic and autoimmune disorders is becoming clearer. The gut bacteria play a role in educating the immune system and hence may be a player in the development of multiple sclerosis. We examine the different sources of information linking the gut microbiota to multiple sclerosis and examine the future avenues for utilizing the knowledge of the gut microbiome to potentially treat and prevent multiple sclerosis.

Keywords

Microbiome Multiple sclerosis 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Pavan Bhargava declares he has no conflict of interest.

Ellen M. Mowry has received grants from Teva Neuroscience.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. 1.
    Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol. 2011;69:240–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc. 2014;89:107–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994;179:973–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol (N Y). 2013;9:560–9.Google Scholar
  6. 6.
    Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 1998;62:1157–70.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Balmer SE, Hanvey LS, Wharton BA. Diet and faecal flora in the newborn: nucleotides. Arch Dis Child Fetal Neonatal Ed. 1994;70:F137–40.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bennet R, Nord CE. Development of the faecal anaerobic microflora after caesarean section and treatment with antibiotics in newborn infants. Infection. 1987;15:332–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:1556–73.CrossRefGoogle Scholar
  10. 10.
    O’Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010;20:281–91.CrossRefGoogle Scholar
  11. 11.•
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80. Arumugam et al. introduced the concept of gut enterotypes and attempte to correlate these with other host characteristics.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43:3380–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Carroll IM, Ringel-Kulka T, Keku TO, Chang Y-H, Packey CD, Sartor RB, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. AJP Gastrointest Liver Physiol. 2011;301:G799–807.CrossRefGoogle Scholar
  15. 15.••
    Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108(Suppl):4615–22. Lee et al. demonstrated that germ-free mice that were resistant to EAE were rendered susceptible by the introduction of segmented filamentous bacteria into their gut microbiome. This phenomenon was mediated through an increased generation of proinflammatory Th17 cells.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol. 2014;49:785–98.PubMedCrossRefGoogle Scholar
  18. 18.
    Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14:2380–2.PubMedGoogle Scholar
  20. 20.
    Menzel T, Lührs H, Zirlik S, Schauber J, Kudlich T, Gerke T, et al. Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm Bowel Dis. 2004;10:122–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. AJP Gastrointest Liver Physiol. 2012;302:G1405–15.CrossRefGoogle Scholar
  22. 22.
    Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res. 2003;1:855–62.PubMedGoogle Scholar
  23. 23.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, de Roos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104:13780–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rajilić-Stojanović M, Shanahan F, Guarner F, de Vos WM. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013;19:481–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2013;1–9.Google Scholar
  28. 28.
    Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One. 2012;7:e26284.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140:976–86.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.•
    Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12. Wang et al. provided a detailed overview of the interactions between the gut microbiome and the CNS.PubMedCrossRefGoogle Scholar
  34. 34.
    Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57:1013–23.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501:52–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mao Y-K, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun. 2013;4:1465.PubMedCrossRefGoogle Scholar
  37. 37.
    Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113:411–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut feelings. Brain Behav Immun. 2010;24:9–16.PubMedCrossRefGoogle Scholar
  39. 39.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263–75.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Walker AW, Duncan SH, Louis P, Flint HJ. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 2014;22:267–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol. 2009;5:e1000605.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Klaassens ES, de Vos WM, Vaughan EE. Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol. 2007;73:1388–92.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med. 2011;3:106ra106.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18:1185–93.PubMedGoogle Scholar
  46. 46.
    Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183:6041–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Ochoa-Repáraz J, Mielcarz DW, Haque-Begum S, Kasper LH. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 2010;1:103–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.••
    Berer K, Mues M, Koutrolos M, Al Rasbi Z, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–41. Berer et al. used a mouse that develops spontaneous EAE to demonstrate that the gut microbiota induces production of CNS autoreactive proinflammatory T cells, which then recruit autoreactive B cells and increase production of antibodies against myelin antigen.PubMedCrossRefGoogle Scholar
  49. 49.
    Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3:487–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.•
    Rumah KR, Linden J, Fischetti VA, Vartanian T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One. 2013;8:e76359. Rumah et al. described the identification of a strain of Clostridium perfringens that produces epsilon toxin which could potentially lead to oligodendrocyte damage and be a trigger for an autoimmune reaction against myelin.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mete A, Garcia J, Ortega J, Lane M, Scholes S, Uzal FA. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf. Vet Pathol. 2013;50:765–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Dorca-Arévalo J, Soler-Jover A, Gibert M, Popoff MR, Martín-Satué M, Blasi J. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet Microbiol. 2008;131:14–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Lonchamp E, Dupont J-L, Wioland L, Courjaret R, Mbebi-Liegeois C, Jover E, et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PLoS One. 2010;5:e13046.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Finnie JW, Blumbergs PC, Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin. J Comp Pathol. 1999;120:415–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10208737.PubMedCrossRefGoogle Scholar
  56. 56.
    Jhangi S, Gandhi R, Glanz B, Cook S, Nejad P, Ward D, et al. Increased Archaea species and changes with therapy in gut microbiome of multiple sclerosis subjects (S24. 001). Neurology. 2014;82(10 Suppl):S24.001.Google Scholar
  57. 57.
    Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R, et al. Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS One. 2014;9:e87734.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mowry EM, Waubant E, Chehoud C, DeSantis T, Kuczynski J, Warrington J. Gut bacterial populations in multiple sclerosis and in health (P05.106). Neurology. 2012;78(Meet Abstr 1):P05.106.Google Scholar
  59. 59.
    Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008;84:940–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496:518–22.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Munger KL, Bentzen J, Laursen B, Stenager E, Koch-Henriksen N, Sørensen TIA, et al. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Mult Scler. 2013;19:1323–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Langer-Gould A, Brara SM, Beaber BE, Koebnick C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;80:548–52.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Hintze KJ, Cox JE, Rompato G, Benninghoff AD, Ward RE, Broadbent J, et al. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes. 2014;5:183–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Smits LP, Bouter KEC, de Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology. 2013;145:946–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Grehan MJ, Borody TJ, Leis SM, Campbell J, Mitchell H, Wettstein A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol. 2010;44:551–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations