Epilepsy: Old Syndromes, New Genes

Pediatric Neurology (DR Nordli, Jr., Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pediatric Neurology

Abstract

Next-generation sequencing technologies have tremendously increased the speed of gene discovery in monogenic epilepsies, enabling us to identify a genetic cause in an increasing proportion of patients, and to better understand the underlying pathophysiology of their disease. The rapid speed with which new genes are being described lately, confronts clinicians with the difficult task of keeping up to date with the continuous supply of new publications. This article aims to discuss some of the genes that were recently discovered in monogenic familial epilepsy syndromes or epileptic encephalopathies for which an underlying cause remained unknown for a long time.

Keywords

Epilepsies Epileptic encephalopathies Genes Ion channels 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Sarah Weckhuysen and Christian M. Korff declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hesdorffer DC, Logroscino G, Benn EKT, Katri N, Cascino G, Hauser WA. Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota. Neurology. 2011;76:23–7.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hildebrand MS, Dahl H-HM, Damiano JA, Smith RJH, Scheffer IE, Berkovic SF. Recent advances in the molecular genetics of epilepsy. J Med Genet. 2013;50:271–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 1995;11:201–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Wallace RH, Wang DW, Singh R, Scheffer IE, George AL, Phillips HA, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nat Genet. 1998;19:366–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+ 2. Nat Genet. 2000;24:343–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68:1327–32.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Carranza Rojo D, Hamiwka L, McMahon JM, Dibbens LM, Arsov T, Suls A, et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology. 2011;77:380–3.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.••
    Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LRF, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol. 2012;71:15–25. This is the first of several publications on the role of KCNQ2 in 10 % of patients with neonatal EE.PubMedCrossRefGoogle Scholar
  9. 9.
    Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40:782–8.PubMedCrossRefGoogle Scholar
  10. 10.••
    Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, et al. Mutations in GRIN2A predispose to idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013;45:1067–72. This article and the articles by Carvill et al. [11] and Lesca et al. [12] are three concomitantly published studies on the first major gene to be identified in childhood epilepsies of the rolandic spectrum.PubMedCrossRefGoogle Scholar
  11. 11.••
    Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45:1073–6. This article and the articles by Lemke et al. [10] and Lesca et al. [12] are three concomitantly published studies on the first major gene to be identified in childhood epilepsies of the rolandic spectrum.PubMedCrossRefGoogle Scholar
  12. 12.••
    Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45:1061–6. This article and the articles by Lemke et al. [10] and Carvill et al. [11] are three concomitantly published studies on the first major gene to be identified in childhood epilepsies of the rolandic spectrum.PubMedCrossRefGoogle Scholar
  13. 13.
    Weckhuysen S, Ivanovic V, Hendrickx R, Van Coster R, Hjalgrim H, Møller RS, et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology. 2013;81:1697–703.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kato M, Yamagata T, Kubota M, Arai H, Yamashita S, Nakagawa T, et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia. 2013;54:1282–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Milh M, Boutry-Kryza N, Sutera-Sardo J, Mignot C, Auvin S, Lacoste C, et al. Similar early characteristics but variable neurological outcome of patients with a de novo mutation of KCNQ2. Orphanet J Rare Dis. 2013;8:80.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998;18:25–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Soldovieri MV, Miceli F, Bellini G, Coppola G, Pascotto A, Taglialatela M. Correlating the clinical and genetic features of benign familial neonatal seizures (BFNS) with the functional consequences of underlying mutations. Channels (Austin). 2007;1:228–33.CrossRefGoogle Scholar
  18. 18.
    Orhan G, Bock M, Schepers D, Ilina EI, Reichel SN, Löffler H, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol. 2013. doi: 10.1002/ana.24080.Google Scholar
  19. 19.
    Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, et al. Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. Proc Natl Acad Sci U S A. 2013;110:4386–91.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Heron SE, Crossland KM, Andermann E, Phillips HA, Hall AJ, Bleasel A, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet. 2002;360:851–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugawara T, Tsurubuchi Y, Agarwala KL, Ito M, Fukuma G, Mazaki-Miyazaki E, et al. A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A. 2001;98:6384–9.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shi X, Yasumoto S, Nakagawa E, Fukasawa T, Uchiya S, Hirose S. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev. 2009;31:758–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakamura K, Kato M, Osaka H, Yamashita S, Nakagawa E, Haginoya K, et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology. 2013;81:992–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Ogiwara I, Ito K, Sawaishi Y, Osaka H, Mazaki E, Inoue I, et al. De novo mutations of voltage-gated sodium channel αII gene SCN2A in intractable epilepsies. Neurology. 2009;73:1046–53.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Touma M, Joshi M, Connolly MC, Grant PE, Hansen AR, Khwaja O, et al. Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings. Epilepsia. 2013;54:e81–5.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kamiya K, Kaneda M, Sugawara T, Mazaki E, Okamura N, Montal M, et al. A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J Neurosci. 2004;24:2690–8.PubMedCrossRefGoogle Scholar
  27. 27.
    De Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74:285–99.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Chen W-J, Lin Y, Xiong Z-Q, Wei W, Ni W, Tan G-H, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43:1252–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet. 2012;90:152–60.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Szepetowski P, Rochette J, Berquin P, Piussan C, Lathrop GM, Monaco AP. Familial infantile convulsions and paroxysmal choreoathetosis: a new neurological syndrome linked to the pericentromeric region of human chromosome 16. Am J Hum Genet. 1997;61:889–98.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Caraballo R, Pavek S, Lemainque A, Gastaldi M, Echenne B, Motte J, et al. Linkage of benign familial infantile convulsions to chromosome 16p12-q12 suggests allelism to the infantile convulsions and choreoathetosis syndrome. Am J Hum Genet. 2001;68:788–94.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.•
    Heron SE, Dibbens LM. Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet. 2013;50:133–9. This is a review article on both the genetic and the clinical aspects of mutations in PRRT2.PubMedCrossRefGoogle Scholar
  36. 36.
    Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology. 2012;79:2115–21.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Marini C, Conti V, Mei D, Battaglia D, Lettori D, Losito E, et al. PRRT2 mutations in familial infantile seizures, paroxysmal dyskinesia, and hemiplegic migraine. Neurology. 2012;79:2109–14.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, et al. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology. 2012;79:2097–103.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Scheffer IE, Grinton BE, Heron SE, Kivity S, Afawi Z, Iona X, et al. PRRT2 phenotypic spectrum includes sporadic and fever-related infantile seizures. Neurology. 2012;79:1–5.CrossRefGoogle Scholar
  40. 40.
    Djémié T, Weckhuysen S, Holmgren P, Hardies K, Van Dyck T, Hendrickx R, et al. PRRT2 mutations: exploring the phenotypical boundaries. J Neurol Neurosurg Psychiatry. 2014;85:462–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Labate A, Mumoli L, Annesi G. Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences. Epilepsia. 2012;53:e196–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee H-Y, Huang Y, Bruneau N, Roll P, Roberson EDO, Hermann M, et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep. 2012;1:2–12.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Coppola G. Malignant migrating partial seizures in infancy: an epilepsy syndrome of unknown etiology. Epilepsia. 2009;50 Suppl 5:49–51.PubMedCrossRefGoogle Scholar
  44. 44.••
    Barcia G, Fleming MR, Deligniere A, Gazula V-R, Brown MR, Langouet M, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44:1255–9. This study was published simultaneously with that of Heron et al. [45]. Both illustrate the phenotypic heterogeneity of mutations in the novel gene KCNT1.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.••
    Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44:1188–90. This study was published simultaneously with that of Barcia et al. [44]. Both illustrate the phenotypic heterogeneity of mutations in the novel gene KCNT1.PubMedCrossRefGoogle Scholar
  46. 46.
    Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet. 2014. doi: 10.1093/hmg/ddu030.Google Scholar
  47. 47.
    Vanderver A, Simons C, Schmidt JL, Pearl PL, Bloom M, Lavenstein B, et al. Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a patient with leukoencephalopathy and severe epilepsy. Pediatr Neurol. 2014;50:112–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Hirose S, Scheffer IE, Marini C, De Jonghe P, Andermann E, Goldman AM, et al. SCN1A testing for epilepsy: application in clinical practice. Epilepsia. 2013;54:946–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Poduri A, Heinzen EL, Chitsazzadeh V, Lasorsa FM, Elhosary PC, LaCoursiere CM, et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol. 2013;74:873–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Milh M, Falace A, Villeneuve N, Vanni N, Cacciagli P, Assereto S, et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat. 2013;34:869–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Poduri A, Chopra SS, Neilan EG, Elhosary PC, Kurian MA, Meyer E, et al. Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia. 2012;53:e146–50.PubMedCrossRefGoogle Scholar
  52. 52.
    Molinari F, Kaminska A, Fiermonte G, Boddaert N, Raas-Rothschild A, Plouin P, et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet. 2009;76:188–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Kurian MA, Meyer E, Vassallo G, Morgan NV, Prakash N, Pasha S, et al. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain. 2010;133:2964–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Falace A, Filipello F, La Padula V, Vanni N, Madia F, De Pietri Tonelli D, et al. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet. 2010;87:365–70.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Corbett MA, Bahlo M, Jolly L, Afawi Z, Gardner AE, Oliver KL, et al. A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am J Hum Genet. 2010;87:371–5.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Guven A, Tolun A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J Med Genet. 2013;50:199–202.PubMedCrossRefGoogle Scholar
  57. 57.
    Campeau PM, Kasperaviciute D, Lu JT, Burrage LC, Kim C, Hori M, et al. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol. 2014;13:44–58.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.•
    Suls A, Jaehn JA, Kecskés A, Weber Y, Weckhuysen S, Craiu DC, et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet. 2013;93:967–75. In this era of big genome data science, animal models are becoming increasingly important to prove the pathogenicity of detected variants. This study generated a zebra fish model to prove the involvement of the gene CHD2 in epilepsy.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.••
    Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45(7):825–30. This article shows how the use of a targeted epilepsy panel in patients with EE can rapidly identify the underlying cause in 10 % of patients.PubMedCrossRefGoogle Scholar
  60. 60.••
    Epi4K Consortium. Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21. This consortium study reports the results of trio exome sequencing in a cohort of 264 patients with infantile spasms or Lennox–Gastaut syndrome. The study illustrates the role of de novo mutations and the large genetic heterogeneity in EE.CrossRefGoogle Scholar
  61. 61.
    Rudolf G, Valenti MP, Hirsch E, Szepetowski P. From rolandic epilepsy to continuous spike-and-waves during sleep and Landau-Kleffner syndromes: insights into possible genetic factors. Epilepsia. 2009;50 Suppl 7:25–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Vears DF, Tsai M-H, Sadleir LG, Grinton BE, Lillywhite LM, Carney PW, et al. Clinical genetic studies in benign childhood epilepsy with centrotemporal spikes. Epilepsia. 2012;53:319–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Bali B, Kull LL, Strug LJ, Clarke T, Murphy PL, Akman CI, et al. Autosomal dominant inheritance of centrotemporal sharp waves in rolandic epilepsy families. Epilepsia. 2007;48:2266–72.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Reutlinger C, Helbig I, Gawelczyk B, Subero JIM, Tönnies H, Muhle H, et al. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia. 2010;51:1870–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Scheffer IE, Phillips HA, O’Brien CE, Saling MM, Wrennall JA, Wallace RH, et al. Familial partial epilepsy with variable foci: a new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Ann Neurol. 1998;44:890–9.PubMedCrossRefGoogle Scholar
  66. 66.••
    Dibbens LM, de Vries B, Donatello S, Heron SE, Hodgson BL, Chintawar S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45:546–51. This article and the article by Ishida et al. [69] are two simultaneously published articles on the role of DEPDC5 focal epilepsies. This gene might become one of the more important genes to consider in the adult neurology practice where one is frequently confronted with patients with focal epilepsies of unknown origin.PubMedCrossRefGoogle Scholar
  67. 67.••
    Ishida S, Picard F, Rudolf G, Noé E, Achaz G, Thomas P, et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet. 2013;45:552–5. This article and the article by Dibbens et al. [68] are two simultaneously published articles on the role of DEPDC5 focal epilepsies. This gene might become one of the more important genes to consider in the adult neurology practice where one is frequently confronted with patients with focal epilepsies of unknown origin.PubMedCrossRefGoogle Scholar
  68. 68.
    Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340:1100–6.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51:676–85.PubMedCrossRefGoogle Scholar
  70. 70.
    Hamdan FF, Gauthier J, Dobrzeniecka S, Lortie A, Mottron L, Vanasse M, et al. Intellectual disability without epilepsy associated with STXBP1 disruption. Eur J Hum Genet. 2011;19:607–9.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Neurogenetics Group, Department of Molecular Genetics, VIBAntwerpBelgium
  2. 2.Laboratory of Neurogenetics, Institute Born-BungeUniversity of AntwerpAntwerpBelgium
  3. 3.Pediatric NeurologyUniversity HospitalsGenevaSwitzerland

Personalised recommendations