Neuronal Ceroid Lipofuscinosis: Impact of Recent Genetic Advances and Expansion of the Clinicopathologic Spectrum

  • Susan L. Cotman
  • Amel Karaa
  • John F. Staropoli
  • Katherine B. Sims
Genetics (V Bonifati, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetics

Abstract

Neuronal ceroid lipofuscinosis (NCL), first clinically described in 1826 and pathologically defined in the 1960s, refers to a group of disorders mostly diagnosed in the childhood years that involve the accumulation of lysosomal storage material with characteristic ultrastructure and prominent neurodegenerative features including vision loss, seizures, motor and cognitive function deterioration, and often times, psychiatric disturbances. All NCL disorders evidence early morbidity and treatment options are limited to symptomatic and palliative care. While distinct genetic forms of NCL have long been recognized, recent genetic advances are considerably widening the NCL genotypic and phenotypic spectrum, highlighting significant overlap with other neurodegenerative diseases. This review will discuss these recent advances and the expanded potential for increased awareness and new research that will ultimately lead to effective treatments for NCL and related disorders.

Keywords

Neuronal ceroid lipofuscinosis NCL Batten disease Kufs disease Parkinson’s disease Parkinsonism Frontotemporal lobar degeneration FTLD Endosome Lysosome Lysosomal disease Subunit c Saposin Progranulin DNAJC5 CSPα CLN6 Cathepsin F KCTD7 ATP13A2 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Mole SE, Williams RE, Goebel HH. The Neuronal Ceroid Lipofuscinoses (Batten Disease). Second edition. Contemporary Neurology Series. Oxford: Oxford University Press; 2011.CrossRefGoogle Scholar
  2. 2.
    Santorelli FM, Garavaglia B, Cardona F, Nardocci N, Bernardina BD, Sartori S, et al. Molecular epidemiology of childhood neuronal ceroid-lipofuscinosis in Italy. Orphanet J Rare Dis. 2013;8:19. doi:1750-1172-8-19 [pii] 10.1186/1750-1172-8-19. 8.PubMedCrossRefGoogle Scholar
  3. 3.
    Jarvela I, Autti T, Lamminranta S, Aberg L, Raininko R, Santavuori P. Clinical and magnetic resonance imaging findings in Batten disease: analysis of the major mutation (1.02-kb deletion). Ann Neurol. 1997;42(5):799–802.PubMedCrossRefGoogle Scholar
  4. 4.
    Munroe PB, Mitchison HM, O'Rawe AM, Anderson JW, Boustany RM, Lerner TJ, et al. Spectrum of mutations in the Batten disease gene, CLN3. Am J Hum Genet. 1997;61(2):310–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics. 2005;6(3):107–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature. 1995;376(6541):584–7.PubMedCrossRefGoogle Scholar
  7. 7.
    International Batten Disease Consortium. Isolation of a novel gene underlying Batten disease, CLN3. Cell. 1995;82(6):949–57.Google Scholar
  8. 8.
    Sleat DE, Donnelly RJ, Lackland H, Liu CG, Sohar I, Pullarkat RK, et al. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science. 1997;277(5333):1802–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES, Peltonen L. CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet. 1998;19(3):286–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A, et al. The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet. 1999;23(2):233–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Wheeler RB, Sharp JD, Schultz RA, Joslin JM, Williams RE, Mole SE. The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am J Hum Genet. 2002;70(2):537–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Gao H, Boustany RM, Espinola JA, Cotman SL, Srinidhi L, Antonellis KA, et al. Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet. 2002;70(2):324–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Siintola E, Partanen S, Stromme P, Haapanen A, Haltia M, Maehlen J, et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129(Pt 6):1438–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Siintola E, Topcu M, Aula N, Lohi H, Minassian BA, Paterson AD, et al. The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet. 2007;81(1):136–46. doi:10.1086/518902.PubMedCrossRefGoogle Scholar
  15. 15.
    • Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012;33(1):42–63. doi:10.1002/humu.21624. Comprehensive review of the spectrum of mutations in the NCL genes discovered prior to he recent discoveries in the past year, described in the present review. PubMedCrossRefGoogle Scholar
  16. 16.
    Kollmann K, Uusi-Rauva K, Scifo E, Tyynela J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta. 2013. doi:10.1016/j.bbadis.2013.01.019.PubMedGoogle Scholar
  17. 17.
    • Arsov T, Smith KR, Damiano J, Franceschetti S, Canafoglia L, Bromhead CJ, et al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet. 2011;88(5):566–73. doi:10.1016/j.ajhg.2011.04.004. Identified a distinct subset of CLN6 mutations in adult-onset NCL (Kufs disease) patients. CLN6 mutations had only previously been recognized in late-infantile onset NCL.
  18. 18.
    • Noskova L, Stranecky V, Hartmannova H, Pristoupilova A, Baresova V, Ivanek R, et al. Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. Am J Hum Genet. 2011;89(2):241–52. doi:10.1016/j.ajhg.2011.07.003. Elegantly used a combination of classic linkage analysis and next-generation sequencing to identify the first gene associated with a dominant form of NCL. Only recessive forms of NCL were genetically identified prior to this report. PubMedCrossRefGoogle Scholar
  19. 19.
    Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, et al. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One. 2011;6(11):e26741. doi:10.1371/journal.pone.0026741.PubMedCrossRefGoogle Scholar
  20. 20.
    Velinov M, Dolzhanskaya N, Gonzalez M, Powell E, Konidari I, Hulme W, et al. Mutations in the gene DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry family and 8 other families. PLoS One. 2012;7(1):e29729. doi:10.1371/journal.pone.0029729.PubMedCrossRefGoogle Scholar
  21. 21.
    Cadieux-Dion M, Andermann E, Lachance-Touchette P, Ansorge O, Meloche C, Barnabe A, et al. Recurrent mutations in DNAJC5 cause autosomal dominant Kufs disease. Clin Genet. 2012. doi:10.1111/cge.12020.PubMedGoogle Scholar
  22. 22.
    Johnson JN, Ahrendt E, Braun JE. CSPalpha: the neuroprotective J protein. Biochem Cell Biol. 2010;88(2):157–65. doi:10.1139/o09-124.PubMedCrossRefGoogle Scholar
  23. 23.
    Sharma M, Burre J, Sudhof TC. CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol. 2011;13(1):30–9. doi:10.1038/ncb2131.PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, et al. The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron. 2004;42(2):237–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Greaves J, Lemonidis K, Gorleku OA, Cruchaga C, Grefen C, Chamberlain LH. Palmitoylation-induced aggregation of cysteine-string protein mutants that cause neuronal ceroid lipofuscinosis. J Biol Chem. 2012;287(44):37330–9. doi:10.1074/jbc.M112.389098.PubMedCrossRefGoogle Scholar
  26. 26.
    Camp LA, Hofmann SL. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem. 1993;268(30):22566–74.PubMedGoogle Scholar
  27. 27.
    Narayan SB, Rakheja D, Tan L, Pastor JV, Bennett MJ. CLN3P, the Batten's disease protein, is a novel palmitoyl-protein Delta-9 desaturase. Ann Neurol. 2006;60(5):570–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Kama R, Kanneganti V, Ungermann C, Gerst J. The yeast Batten disease ortholog, Btn1, controls endosome-Golgi retrograde transport via SNARE assembly. J Cell Biol. 2011;195(2):203–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Lehtovirta M, Kyttala A, Eskelinen EL, Hess M, Heinonen O, Jalanko A. Palmitoyl protein thioesterase (PPT) localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal ceroid lipofuscinosis (INCL). Hum Mol Genet. 2001;10(1):69–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Suopanki J, Lintunen M, Lahtinen H, Haltia M, Panula P, Baumann M, et al. Status epilepticus induces changes in the expression and localization of endogenous palmitoyl-protein thioesterase 1. Neurobiol Dis. 2002;10(3):247–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim SJ, Zhang Z, Sarkar C, Tsai PC, Lee YC, Dye L, et al. Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J Clin Invest. 2008;118(9):3075–86. doi:10.1172/JCI33482.PubMedCrossRefGoogle Scholar
  32. 32.
    Luiro K, Kopra O, Lehtovirta M, Jalanko A. CLN3 protein is targeted to neuronal synapses but excluded from synaptic vesicles: new clues to Batten disease. Hum Mol Genet. 2001;10(19):2123–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Saja S, Buff H, Smith AC, Williams TS, Korey CA. Identifying cellular pathways modulated by Drosophila palmitoyl-protein thioesterase 1 function. Neurobiol Dis. 2010;40(1):135–45. doi:10.1016/j.nbd.2010.02.010.PubMedCrossRefGoogle Scholar
  34. 34.
    • Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90(6):1102–7. doi:10.1016/j.ajhg.2012.04.021. This study established the first genetic link between NCL and FTLD, demonstrating a novel effect of GRN mutation allele dosage on phenotypic presentation. PubMedCrossRefGoogle Scholar
  35. 35.
    Cenik B, Sephton CF, Kutluk Cenik B, Herz J, Yu G. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem. 2012;287(39):32298–306. doi:10.1074/jbc.R112.399170.PubMedCrossRefGoogle Scholar
  36. 36.
    Jian J, Konopka J, Liu C. Insights into the role of progranulin in immunity, infection, and inflammation. J Leukoc Biol. 2013;93(2):199–208. doi:10.1189/jlb.0812429.PubMedCrossRefGoogle Scholar
  37. 37.
    Ryan CL, Baranowski DC, Chitramuthu BP, Malik S, Li Z, Cao M, et al. Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neurosci. 2009;10:130. doi:10.1186/1471-2202-10-130.PubMedCrossRefGoogle Scholar
  38. 38.
    Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE, Gass J, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177(1):311–24. doi:10.2353/ajpath.2010.090915.PubMedCrossRefGoogle Scholar
  39. 39.
    Petkau TL, Neal SJ, Orban PC, MacDonald JL, Hill AM, Lu G, et al. Progranulin expression in the developing and adult murine brain. J Comp Neurol. 2010;518(19):3931–47. doi:10.1002/cne.22430.PubMedCrossRefGoogle Scholar
  40. 40.
    Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010;68(4):654–67. doi:10.1016/j.neuron.2010.09.034.PubMedCrossRefGoogle Scholar
  41. 41.
    Mamo A, Jules F, Dumaresq-Doiron K, Costantino S, Lefrancois S. The role of ceroid lipofuscinosis neuronal protein 5 (CLN5) in endosomal sorting. Mol Cell Biol. 2012;32(10):1855–66. doi:10.1128/MCB.06726-11.PubMedCrossRefGoogle Scholar
  42. 42.
    Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 2003;22(24):6430–7. doi:10.1093/emboj/cdg629.PubMedCrossRefGoogle Scholar
  43. 43.
    Canuel M, Korkidakis A, Konnyu K, Morales CR. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem Biophys Res Commun. 2008;373(2):292–7. doi:10.1016/j.bbrc.2008.06.021.PubMedCrossRefGoogle Scholar
  44. 44.
    Wohlke A, Philipp U, Bock P, Beineke A, Lichtner P, Meitinger T, et al. A one base pair deletion in the canine ATP13A2 gene causes exon skipping and late-onset neuronal ceroid lipofuscinosis in the Tibetan terrier. PLoS Genet. 2011;7(10):e1002304. doi:10.1371/journal.pgen.1002304.PubMedCrossRefGoogle Scholar
  45. 45.
    • Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50. doi:10.1093/hmg/dds089. The first genetic link in humans between NCL and monogenic parkinsonism, predicted by an earlier finding of a homozygous ATP13A2 mutation in a canine model of NCL. PubMedCrossRefGoogle Scholar
  46. 46.
    Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91. doi:10.1038/ng1884.PubMedCrossRefGoogle Scholar
  47. 47.
    Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68(19):1557–62. doi:10.1212/01.wnl.0000260963.08711.08.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmidt K, Wolfe DM, Stiller B, Pearce DA. Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem Biophys Res Commun. 2009;383(2):198–202. doi:10.1016/j.bbrc.2009.03.151.PubMedCrossRefGoogle Scholar
  49. 49.
    Park JS, Mehta P, Cooper AA, Veivers D, Heimbach A, Stiller B, et al. Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing Kufor-Rakeb syndrome, a form of early-onset parkinsonism. Hum Mutat. 2011;32(8):956–64. doi:10.1002/humu.21527.PubMedCrossRefGoogle Scholar
  50. 50.
    Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78(6):988–98. doi:10.1086/504159.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith KR, Dahl HH, Canafoglia L, Andermann E, Damiano J, Morbin M, et al. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22(7):1417–23. doi:10.1093/hmg/dds558.PubMedCrossRefGoogle Scholar
  52. 52.
    Staropoli JF, Karaa A, Lim ET, Kirby A, Elbalalesy N, Romansky SG, et al. A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet. 2012;91(1):202–8. doi:10.1016/j.ajhg.2012.05.023.PubMedCrossRefGoogle Scholar
  53. 53.
    Van Bogaert P, Azizieh R, Desir J, Aeby A, De Meirleir L, Laes JF, et al. Mutation of a potassium channel-related gene in progressive myoclonic epilepsy. Ann Neurol. 2007;61(6):579–86. doi:10.1002/ana.21121.PubMedCrossRefGoogle Scholar
  54. 54.
    Kousi M, Anttila V, Schulz A, Calafato S, Jakkula E, Riesch E, et al. Novel mutations consolidate KCTD7 as a progressive myoclonus epilepsy gene. J Med Genet. 2012;49(6):391–9. doi:10.1136/jmedgenet-2012-100859.PubMedCrossRefGoogle Scholar
  55. 55.
    Azizieh R, Orduz D, Van Bogaert P, Bouschet T, Rodriguez W, Schiffmann SN, et al. Progressive myoclonic epilepsy-associated gene KCTD7 is a regulator of potassium conductance in neurons. Mol Neurobiol. 2011;44(1):111–21. doi:10.1007/s12035-011-8194-0.PubMedCrossRefGoogle Scholar
  56. 56.
    Huotari J, Meyer-Schaller N, Hubner M, Stauffer S, Katheder N, Horvath P, et al. Cullin-3 regulates late endosome maturation. Proc Natl Acad Sci USA. 2012;109(3):823–8. doi:10.1073/pnas.1118744109.PubMedCrossRefGoogle Scholar
  57. 57.
    Piper RC, Katzmann DJ. Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol. 2007;23:519–47. doi:10.1146/annurev.cellbio.23.090506.123319.PubMedCrossRefGoogle Scholar
  58. 58.
    Ostergaard JR, Rasmussen TB, Molgaard H. Cardiac involvement in juvenile neuronal ceroid lipofuscinosis (Batten disease). Neurology. 2011;76(14):1245–51. doi:10.1212/WNL.0b013e31821435bd.PubMedCrossRefGoogle Scholar
  59. 59.
    Fukumura S, Saito Y, Saito T, Komaki H, Nakagawa E, Sugai K, et al. Progressive conduction defects and cardiac death in late infantile neuronal ceroid lipofuscinosis. Dev Med Child Neurol. 2012;54(7):663–6. doi:10.1111/j.1469-8749.2011.04170.x.PubMedCrossRefGoogle Scholar
  60. 60.
    Chattopadhyay S, Ito M, Cooper JD, Brooks AI, Curran TM, Powers JM, et al. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum Mol Genet. 2002;11(12):1421–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Bigio EH. Making the diagnosis of frontotemporal lobar degeneration. Arch Pathol Lab Med. 2013;137(3):314–25. doi:10.5858/arpa.2012-0075-RA.PubMedCrossRefGoogle Scholar
  62. 62.
    Cohn-Hokke PE, Elting MW, Pijnenburg YA, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(6):628–43. doi:10.1002/ajmg.b.32080.PubMedCrossRefGoogle Scholar
  63. 63.
    Sun L, Eriksen JL. Recent insights into the involvement of progranulin in frontotemporal dementia. Curr Neuropharmacol. 2011;9(4):632–42. doi:10.2174/157015911798376361.PubMedCrossRefGoogle Scholar
  64. 64.
    Wils H, Kleinberger G, Pereson S, Janssens J, Capell A, Van Dam D, et al. Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol. 2012;228(1):67–76. doi:10.1002/path.4043.PubMedGoogle Scholar
  65. 65.
    Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J. 2010;24(12):4639–47. doi:10.1096/fj.10-161471.PubMedCrossRefGoogle Scholar
  66. 66.
    Petkau TL, Neal SJ, Milnerwood A, Mew A, Hill AM, Orban P, et al. Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis. 2012;45(2):711–22. doi:10.1016/j.nbd.2011.10.016.PubMedCrossRefGoogle Scholar
  67. 67.
    Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K, et al. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res. 2007;185(2):110–8. doi:10.1016/j.bbr.2007.07.020.PubMedCrossRefGoogle Scholar
  68. 68.
    Ruottinen HM, Rinne JO, Haaparanta M, Solin O, Bergman J, Oikonen VJ, et al. [18F]fluorodopa PET shows striatal dopaminergic dysfunction in juvenile neuronal ceroid lipofuscinosis. J Neurol Neurosurg Psychiatry. 1997;62(6):622–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Aberg L, Liewendahl K, Nikkinen P, Autti T, Rinne JO, Santavuori P. Decreased striatal dopamine transporter density in JNCL patients with parkinsonian symptoms. Neurology. 2000;54(5):1069–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Aberg LE, Rinne JO, Rajantie I, Santavuori P. A favorable response to antiparkinsonian treatment in juvenile neuronal ceroid lipofuscinosis. Neurology. 2001;56(9):1236–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Le NM, Parikh S. Late infantile neuronal ceroid lipofuscinosis and dopamine deficiency. J Child Neurol. 2012;27(2):234–7. doi:10.1177/0883073811419261.PubMedCrossRefGoogle Scholar
  72. 72.
    Nijssen PC, Brusse E, Leyten AC, Martin JJ, Teepen JL, Roos RA. Autosomal dominant adult neuronal ceroid lipofuscinosis: parkinsonism due to both striatal and nigral dysfunction. Mov Disord. 2002;17(3):482–7. doi:10.1002/mds.10104.PubMedCrossRefGoogle Scholar
  73. 73.
    Josephson SA, Schmidt RE, Millsap P, McManus DQ, Morris JC. Autosomal dominant Kufs' disease: a cause of early onset dementia. J Neurol Sci. 2001;188(1–2):51–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Schultheis PJ, Fleming SM, Clippinger AK, Lewis J, Tsunemi T, Giasson B, et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited alpha-synuclein accumulation and age-dependent sensorimotor deficits. Hum Mol Genet. 2013. doi:10.1093/hmg/ddt057.PubMedGoogle Scholar
  75. 75.
    Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, et al. Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet. 2009;41(3):308–15. doi:10.1038/ng.300.PubMedCrossRefGoogle Scholar
  76. 76.
    Houlden H, Singleton AB. The genetics and neuropathology of Parkinson's disease. Acta Neuropathol. 2012;124(3):325–38. doi:10.1007/s00401-012-1013-5.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang CK, Stein PB, Liu J, Wang Z, Yang R, Cho JH, et al. Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am J Hematol. 2012;87(4):377–83. doi:10.1002/ajh.23118.PubMedCrossRefGoogle Scholar
  78. 78.
    de Siqueira LF. Progressive myoclonic epilepsies: review of clinical, molecular and therapeutic aspects. J Neurol. 2010;257(10):1612–9. doi:10.1007/s00415-010-5641-1.PubMedCrossRefGoogle Scholar
  79. 79.
    Andrade DM, Paton T, Turnbull J, Marshall CR, Scherer SW, Minassian BA. Mutation of the CLN6 gene in teenage-onset progressive myoclonus epilepsy. Pediatr Neurol. 2012;47(3):205–8. doi:10.1016/j.pediatrneurol.2012.05.004.PubMedCrossRefGoogle Scholar
  80. 80.
    • Sun Y, Almomani R, Breedveld GJ, Santen GW, Aten E, Lefeber DJ, et al. Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1. The gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 Disease). Hum Mutat. 2013. doi:10.1002/humu.22292. Demonstrates the power of enzyme screening to pick up novel and unexpected phenotypic presentations of lysosomal storage diseases.Google Scholar
  81. 81.
    Breedveld GJ, van Wetten B, te Raa GD, Brusse E, van Swieten JC, Oostra BA, et al. A new locus for a childhood onset, slowly progressive autosomal recessive spinocerebellar ataxia maps to chromosome 11p15. J Med Genet. 2004;41(11):858–66. doi:10.1136/jmg.2004.019232.PubMedCrossRefGoogle Scholar
  82. 82.
    Thorburn DR, Rahman S. Mitochondrial DNA-Associated Leigh Syndrome and NARP. 1993. doi:NBK1173 [book accession].Google Scholar
  83. 83.
    Jolly RD, Brown S, Das AM, Walkley SU. Mitochondrial dysfunction in the neuronal ceroid-lipofuscinoses (Batten disease). Neurochem Int. 2002;40(6):565–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Fossale E, Wolf P, Espinola JA, Lubicz-Nawrocka T, Teed AM, Gao H, et al. Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neuroscience. 2004;5(57).Google Scholar
  85. 85.
    Luiro K, Kopra O, Blom T, Gentile M, Mitchison HM, Hovatta I, et al. Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. J Neurosci Res. 2006;84(5):1124–38.PubMedCrossRefGoogle Scholar
  86. 86.
    Pezzini F, Gismondi F, Tessa A, Tonin P, Carrozzo R, Mole SE, et al. Involvement of the mitochondrial compartment in human NCL fibroblasts. Biochem Biophys Res Commun. 2011;416(1–2):159–64. doi:10.1016/j.bbrc.2011.11.016.PubMedCrossRefGoogle Scholar
  87. 87.
    Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, Hirano M, et al. Early-onset familial parkinsonism due to POLG mutations. Ann Neurol. 2006;59(5):859–62. doi:10.1002/ana.20831.PubMedCrossRefGoogle Scholar
  88. 88.
    Hudson G, Schaefer AM, Taylor RW, Tiangyou W, Gibson A, Venables G, et al. Mutation of the linker region of the polymerase gamma-1 (POLG1) gene associated with progressive external ophthalmoplegia and Parkinsonism. Arch Neurol. 2007;64(4):553–7. doi:10.1001/archneur.64.4.553.PubMedCrossRefGoogle Scholar
  89. 89.
    Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803. doi:10.1083/jcb.200809125.PubMedCrossRefGoogle Scholar
  90. 90.
    Gusdon AM, Zhu J, Van Houten B, Chu CT. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol Dis. 2012;45(3):962–72. doi:10.1016/j.nbd.2011.12.015.PubMedCrossRefGoogle Scholar
  91. 91.
    Staropoli JF, Xin W, Barone R, Cotman SL, Sims KB. An atypical case of neuronal ceroid lipofuscinosis with co-inheritance of a variably penetrant POLG1 mutation. BMC Med Genet. 2012;13:50. doi:10.1186/1471-2350-13-50.PubMedCrossRefGoogle Scholar
  92. 92.
    Jalanko A, Tyynela J, Peltonen L. From genes to systems: new global strategies for the characterization of NCL biology. Biochim Biophys Acta. 2006;1762(10):934–44. doi:10.1016/j.bbadis.2006.09.001.PubMedCrossRefGoogle Scholar
  93. 93.
    Kmoch S, Stranecky V, Emes RD, Mitchison HM. Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta. 2012. doi:10.1016/j.bbadis.2012.12.010.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Susan L. Cotman
    • 1
  • Amel Karaa
    • 2
    • 4
  • John F. Staropoli
    • 3
  • Katherine B. Sims
    • 1
  1. 1.Center for Human Genetic Research, Department of NeurologyMassachusetts General HospitalBostonUSA
  2. 2.Center for Human Genetic Research, Massachusetts General HospitalBostonUSA
  3. 3.Center for Human Genetic Research, Department of PathologyMassachusetts General HospitalBostonUSA
  4. 4.Clinical Genetics ProgramHarvard Medical School BostonUSA

Personalised recommendations