Phenotypic Spectrum of Glucose Transporter Type 1 Deficiency Syndrome (Glut1 DS)

  • Toni S. Pearson
  • Cigdem Akman
  • Veronica J. Hinton
  • Kristin Engelstad
  • Darryl C. De VivoEmail author
Pediatric Neurology (D Nordli, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pediatric Neurology


Glut1 deficiency syndrome (Glut1 DS) was originally described in 1991 as a developmental encephalopathy characterized by infantile onset refractory epilepsy, cognitive impairment, and mixed motor abnormalities including spasticity, ataxia, and dystonia. The clinical condition is caused by impaired glucose transport across the blood brain barrier. The past 5 years have seen a dramatic expansion in the range of clinical syndromes that are recognized to occur with Glut1 DS. In particular, there has been greater recognition of milder phenotypes. Absence epilepsy and other idiopathic generalized epilepsy syndromes may occur with seizure onset in childhood or adulthood. A number of patients present predominantly with movement disorders, sometimes without any accompanying seizures. In particular, paroxysmal exertional dyskinesia is now a well-documented clinical feature that occurs in individuals with Glut1 DS. A clue to the diagnosis in patients with paroxysmal symptoms may be the triggering of episodes during fasting or exercise. Intellectual impairment may range from severe to very mild. Awareness of the broad range of potential clinical phenotypes associated with Glut1 DS will facilitate earlier diagnosis of this treatable neurologic condition. The ketogenic diet is the mainstay of treatment and nourishes the starving symptomatic brain during development.


Seizures Intellectual disability Movement disorders Hypoglycorrhachia SLC2A1 mutations Glucose transporter 



The authors are grateful for the support of the Colleen Giblin Foundation, the Will Foundation, Milestones for Children, and USPHS grant 5R01NS37949 (NINDS, dcd).


Toni S. Pearson declares no conflict of interest. Cigdem Akman declares no conflict of interest. Veronica J. Hinton declares no conflict of interest. Kristin Engelstad declares no conflict of interest. Darryl C. De Vivo declares no conflict of interest.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2007;27(11):1766–91. doi: 10.1038/sj.jcbfm.9600521.CrossRefGoogle Scholar
  2. 2.
    Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998;27(2):184–8. doi: 10.1006/pmed.1998.0274.PubMedCrossRefGoogle Scholar
  3. 3.
    De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703–9. doi: 10.1056/NEJM199109053251006.PubMedCrossRefGoogle Scholar
  4. 4.
    Seidner G, Alvarez MG, Yeh JI, O'Driscoll KR, Klepper J, Stump TS, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat Genet. 1998;18(2):188–91. doi: 10.1038/ng0298-188.PubMedCrossRefGoogle Scholar
  5. 5.
    Klepper J, Scheffer H, Elsaid MF, Kamsteeg EJ, Leferink M, Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. 2009;40(5):207–10. doi: 10.1055/s-0030-1248264.PubMedCrossRefGoogle Scholar
  6. 6.
    •• Rotstein M, Engelstad K, Yang H, Wang D, Levy B, Chung WK, et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68(6):955–8. doi: 10.1002/ana.22088. This article describes 2 patients with Glut1 DS as an autosomal recessive trait, demonstrating that the severity of the clinical syndrome was determined by the relative pathogenicity of the mutations and the resulting degree of haploinsufficiency. This illustrates an important principle that applies to all patients with Glut1DS.PubMedCrossRefGoogle Scholar
  7. 7.
    •• Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70. doi: 10.1093/brain/awp336. This articles describes the genetic and clinical features of a series of 57 patients with Glut1 DS, outlining the broad range of possible clinical syndromes, including patients with seizure onset at an older age and patients without epilepsy.PubMedCrossRefGoogle Scholar
  8. 8.
    •• Yang H, Wang D, Engelstad K, Bagay L, Wei Y, Rotstein M, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70(6):996–1005. doi: 10.1002/ana.22640. This study validated the erythrocyte glucose uptake assay as a confirmatory functional diagnostic test, and as a surrogate marker of residual Glut1 activity which correlates with clinical severity.PubMedCrossRefGoogle Scholar
  9. 9.
    De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol. 2002;17 Suppl 3:3S15–23. discussion 3S4-5.PubMedGoogle Scholar
  10. 10.
    Leary LD, Wang D, Nordli Jr DR, Engelstad K, De Vivo DC. Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia. 2003;44(5):701–7.PubMedCrossRefGoogle Scholar
  11. 11.
    • Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53(9):1503–10. doi: 10.1111/j.1528-1167.2012.03592.x. This retrospective study details the epilepsy phenotypes and treatment response to the ketogenic diet and anticonvulsant mediations in 87 patients with Glut1 DS. Also found was a significant lag in diagnosis, with mean age at seizure onset of 8 months to mean age at diagnosis of 5 years.PubMedCrossRefGoogle Scholar
  12. 12.
    Suls A, Mullen SA, Weber YG, Verhaert K, Ceulemans B, Guerrini R, et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol. 2009;66(3):415–9. doi: 10.1002/ana.21724.PubMedCrossRefGoogle Scholar
  13. 13.
    •• Mullen SA, Suls A, De Jonghe P, Berkovic SF, Scheffer IE. Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology. 2010;75(5):432–40. doi: 10.1212/WNL.0b013e3181eb58b4. The authors describe the variety of epilepsy syndromes observed in 2 kindreds (12 individuals) with SLC2A1 mutations, including idiopathic generalized epilepsy with absence, myoclonic-astatic, and focal seizures. These represent milder forms of epilepsy than were previously associated with Glut1 DS.PubMedCrossRefGoogle Scholar
  14. 14.
    Afawi Z, Suls A, Ekstein D, Kivity S, Neufeld MY, Oliver K, et al. Mild adolescent/adult onset epilepsy and paroxysmal exercise-induced dyskinesia due to GLUT1 deficiency. Epilepsia. 2010;51(12):2466–9. doi: 10.1111/j.1528-1167.2010.02726.x.PubMedCrossRefGoogle Scholar
  15. 15.
    Striano P, Weber YG, Toliat MR, Schubert J, Leu C, Chaimana R, et al. GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology. 2012;78(8):557–62. doi: 10.1212/WNL.0b013e318247ff54.PubMedCrossRefGoogle Scholar
  16. 16.
    Mullen SA, Marini C, Suls A, Mei D, Della Giustina E, Buti D, et al. Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol. 2011;68(9):1152–5. doi: 10.1001/archneurol.2011.102.PubMedCrossRefGoogle Scholar
  17. 17.
    Akman CI, Engelstad K, Hinton VJ, Ullner P, Koenigsberger D, Leary L, et al. Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency. Ann Neurol. 2010;67(1):31–40. doi: 10.1002/ana.21797.PubMedCrossRefGoogle Scholar
  18. 18.
    Lindgren KA, Larson CL, Schaefer SM, Abercrombie HC, Ward RT, Oakes TR, et al. Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biol Psychiatry. 1999;45(8):943–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E. Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol. 2005;93(5):2864–72. doi: 10.1152/jn.00721.2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Goldman RI, Stern JM, Engel Jr J, Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport. 2002;13(18):2487–92. doi: 10.1097/01.wnr.0000047685.08940.d0.PubMedCrossRefGoogle Scholar
  21. 21.
    Schreckenberger M, Lange-Asschenfeldt C, Lochmann M, Mann K, Siessmeier T, Buchholz HG, et al. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. Neuroimage. 2004;22(2):637–44. doi: 10.1016/j.neuroimage.2004.01.047.PubMedCrossRefGoogle Scholar
  22. 22.
    Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52(4):458–64. doi: 10.1002/ana.10311.PubMedCrossRefGoogle Scholar
  23. 23.
    Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatry. 2005;11(4):357–72. doi: 10.1177/1073858405277450.Google Scholar
  24. 24.
    Klepper J, Fischbarg J, Vera JC, Wang D, De Vivo DC. GLUT1-deficiency: barbiturates potentiate haploinsufficiency in vitro. Pediatr Res. 1999;46(6):677–83.PubMedCrossRefGoogle Scholar
  25. 25.
    von Moers A, Brockmann K, Wang D, Korenke CG, Huppke P, De Vivo DC, et al. EEG features of glut-1 deficiency syndrome. Epilepsia. 2002;43(8):941–5.CrossRefGoogle Scholar
  26. 26.
    Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–81. doi: 10.1002/mds.22808.PubMedCrossRefGoogle Scholar
  27. 27.
    Overweg-Plandsoen WC, Groener JE, Wang D, Onkenhout W, Brouwer OF, Bakker HD, et al. GLUT-1 deficiency without epilepsy–an exceptional case. J Inherit Metab Dis. 2003;26(6):559–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Friedman JR, Thiele EA, Wang D, Levine KB, Cloherty EK, Pfeifer HH, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006;21(2):241–5. doi: 10.1002/mds.20660.PubMedCrossRefGoogle Scholar
  29. 29.
    Perez-Duenas B, Prior C, Ma Q, Fernandez-Alvarez E, Setoain X, Artuch R, et al. Childhood chorea with cerebral hypotrophy: a treatable GLUT1 energy failure syndrome. Arch Neurol. 2009;66(11):1410–4. doi: 10.1001/archneurol.2009.236.PubMedCrossRefGoogle Scholar
  30. 30.
    Klepper J, Engelbrecht V, Scheffer H, van der Knaap MS, Fiedler A. GLUT1 deficiency with delayed myelination responding to ketogenic diet. Pediatr Neurol. 2007;37(2):130–3. doi: 10.1016/j.pediatrneurol.2007.03.009.PubMedCrossRefGoogle Scholar
  31. 31.
    Joshi C, Greenberg CR, De Vivo D, Dong W, Chan-Lui W, Booth FA. GLUT1 deficiency without epilepsy: yet another case. J Child Neurol. 2008;23(7):832–4. doi: 10.1177/0883073808314896.PubMedCrossRefGoogle Scholar
  32. 32.
    Koy A, Assmann B, Klepper J, Mayatepek E. Glucose transporter type 1 deficiency syndrome with carbohydrate-responsive symptoms but without epilepsy. Dev Med Child Neurol. 2011;53(12):1154–6. doi: 10.1111/j.1469-8749.2011.04082.x.PubMedCrossRefGoogle Scholar
  33. 33.
    Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol. 1977;2(4):285–93. doi: 10.1002/ana.410020405.PubMedCrossRefGoogle Scholar
  34. 34.
    Plant GT, Williams AC, Earl CJ, Marsden CD. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry. 1984;47(3):275–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Nardocci N, Lamperti E, Rumi V, Angelini L. Typical and atypical forms of paroxysmal choreoathetosis. Dev Med Child Neurol. 1989;31(5):670–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Bhatia KP, Soland VL, Bhatt MH, Quinn NP, Marsden CD. Paroxysmal exercise-induced dystonia: eight new sporadic cases and a review of the literature. Mov Disord. 1997;12(6):1007–12. doi: 10.1002/mds.870120626.PubMedCrossRefGoogle Scholar
  37. 37.
    Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831–44. doi: 10.1093/brain/awn113.PubMedCrossRefGoogle Scholar
  38. 38.
    •• Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68. doi: 10.1172/JCI34438. The authors identified a SLC2A1 mutation in members of a family with paroxysmal exertional dyskinesia (PED), epilepsy, mild developmental delay, and hemolytic anemia, and demonstrated that a cation leak in the red cell membrane caused by the mutant Glut1 protein was the mechanism underlying the hemolytic anemia. They also identified SLC2A1 mutations in 2 other families with PED and epilepsy.PubMedGoogle Scholar
  39. 39.
    Bovi T, Fasano A, Juergenson I, Gellera C, Castellotti B, Fontana E, et al. Paroxysmal exercise-induced dyskinesia with self-limiting partial epilepsy: a novel GLUT-1 mutation with benign phenotype. Parkinsonism Relat Disord. 2011;17(6):479–81. doi: 10.1016/j.parkreldis.2011.03.015.PubMedCrossRefGoogle Scholar
  40. 40.
    Schneider SA, Paisan-Ruiz C, Garcia-Gorostiaga I, Quinn NP, Weber YG, Lerche H, et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord. 2009;24(11):1684–8. doi: 10.1002/mds.22507.PubMedCrossRefGoogle Scholar
  41. 41.
    Auburger G, Ratzlaff T, Lunkes A, Nelles HW, Leube B, Binkofski F, et al. A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197. Genomics. 1996;31(1):90–4. doi: 10.1006/geno.1996.0013.PubMedCrossRefGoogle Scholar
  42. 42.
    Weber YG, Kamm C, Suls A, Kempfle J, Kotschet K, Schule R, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959–64. doi: 10.1212/WNL.0b013e31822e0479.PubMedCrossRefGoogle Scholar
  43. 43.
    Zorzi G, Castellotti B, Zibordi F, Gellera C, Nardocci N. Paroxysmal movement disorders in GLUT1 deficiency syndrome. Neurology. 2008;71(2):146–8. doi: 10.1212/ Scholar
  44. 44.
    Rotstein M, Doran J, Yang H, Ullner PM, Engelstad K, De Vivo DC. Glut1 deficiency and alternating hemiplegia of childhood. Neurology. 2009;73(23):2042–4. doi: 10.1212/WNL.0b013e3181c55ebf.PubMedCrossRefGoogle Scholar
  45. 45.
    Urbizu A, Cuenca-Leon E, Raspall-Chaure M, Gratacos M, Conill J, Redecillas S, et al. Paroxysmal exercise-induced dyskinesia, writer's cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295(1–2):110–3. doi: 10.1016/j.jns.2010.05.017.PubMedCrossRefGoogle Scholar
  46. 46.
    Ito Y, Oguni H, Ito S, Oguni M, Osawa M. A modified Atkins diet is promising as a treatment for glucose transporter type 1 deficiency syndrome. Dev Med Child Neurol. 2011;53(7):658–63. doi: 10.1111/j.1469-8749.2011.03961.x.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu Y, Bao X, Wang D, Fu N, Zhang X, Cao G, et al. Allelic variations of Glut-1 deficiency syndrome: the Chinese experience. Pediatr Neurol. 2012;47(1):30–4. doi: 10.1016/j.pediatrneurol.2012.04.010.PubMedCrossRefGoogle Scholar
  48. 48.
    Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36(5):302–8. doi: 10.1055/s-2005-872843.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57(1):111–8. doi: 10.1002/ana.20331.PubMedCrossRefGoogle Scholar
  50. 50.
    Pascual JM, Wang D, Hinton V, Engelstad K, Saxena CM, Van Heertum RL, et al. Brain glucose supply and the syndrome of infantile neuroglycopenia. Arch Neurol. 2007;64(4):507–13. doi: 10.1001/archneur.64.4.noc60165.PubMedCrossRefGoogle Scholar
  51. 51.
    Flatt JF, Guizouarn H, Burton NM, Borgese F, Tomlinson RJ, Forsyth RJ, et al. Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome. Blood. 2011;118(19):5267–77. doi: 10.1182/blood-2010-12-326645.PubMedCrossRefGoogle Scholar
  52. 52.
    Bawazir WM, Gevers EF, Flatt JF, Ang AL, Jacobs B, Oren C, et al. An infant with pseudohyperkalemia, hemolysis, and seizures: cation-leaky GLUT1-deficiency syndrome due to a SLC2A1 mutation. J Clin Endocrinol Metab. 2012;97(6):E987–93. doi: 10.1210/jc.2012-1399.PubMedCrossRefGoogle Scholar
  53. 53.
    Zheng PP, Romme E, van der Spek PJ, Dirven CM, Willemsen R, Kros JM. Defect of development of ocular vasculature in Glut1/SLC2A1 knockdown in vivo. Cell Cycle. 2011;10(11):1871–2.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaufmann P, Shungu DC, Sano MC, Jhung S, Engelstad K, Mitsis E, et al. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology. 2004;62(8):1297–302.PubMedCrossRefGoogle Scholar
  55. 55.
    • Levy B, Wang D, Ullner PM, Engelstad K, Yang H, Nahum O, et al. Uncovering microdeletions in patients with severe Glut-1 deficiency syndrome using SNP oligonucleotide microarray analysis. Mol Genet Metab. 2010;100(2):129–35. doi: 10.1016/j.ymgme.2010.03.007. The authors describe 7 children with Glut-1 DS caused by microdeletions in the SLC2A1 region, who all had a severe clinical syndrome.PubMedCrossRefGoogle Scholar
  56. 56.
    Barros LF, Bittner CX, Loaiza A, Porras OH. A quantitative overview of glucose dynamics in the gliovascular unit. Glia. 2007;55(12):1222–37. doi: 10.1002/glia.20375.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, et al. A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet. 2006;15(7):1169–79. doi: 10.1093/hmg/ddl032.PubMedCrossRefGoogle Scholar
  58. 58.
    Jensen PJ, Gitlin JD, Carayannopoulos MO. GLUT1 deficiency links nutrient availability and apoptosis during embryonic development. J Biol Chem. 2006;281(19):13382–7. doi: 10.1074/jbc.M601881200.PubMedCrossRefGoogle Scholar
  59. 59.
    Gramer G, Wolf NI, Vater D, Bast T, Santer R, Kamsteeg EJ, et al. Glucose transporter-1 (GLUT1) deficiency syndrome: diagnosis and treatment in late childhood. Neuropediatrics. 2012;43(3):168–71. doi: 10.1055/s-0032-1315433.PubMedCrossRefGoogle Scholar
  60. 60.
    De Vivo DC, Bohan TP, Coulter DL, Dreifuss FE, Greenwood RS, Nordli Jr DR, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia. 1998;39(11):1216–25.PubMedCrossRefGoogle Scholar
  61. 61.
    Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T, et al. The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes. 2001;50(6):1464–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Anheim M, Maillart E, Vuillaumier-Barrot S, Flamand-Rouviere C, Pineau F, Ewenczyk C, et al. Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1-deficiency. J Neurol. 2011;258(2):316–7. doi: 10.1007/s00415-010-5702-5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Toni S. Pearson
    • 1
  • Cigdem Akman
    • 1
  • Veronica J. Hinton
    • 1
  • Kristin Engelstad
    • 1
  • Darryl C. De Vivo
    • 1
    Email author
  1. 1.Department of NeurologyColumbia UniversityNew YorkUSA

Personalised recommendations