Neuromuscular Disorders of Glycogen Metabolism

  • Elisabetta Gazzerro
  • Antoni L. Andreu
  • Claudio Bruno
Nerve and Muscle (M Hirano and LH Weimer, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Nerve and Muscle

Abstract

Disorders of glycogen metabolism are inborn errors of energy homeostasis affecting primarily skeletal muscle, heart, liver, and, less frequently, the central nervous system. These rare diseases are quite variable in age of onset, symptoms, morbidity, and mortality. This review provides an update on disorders of glycogen metabolism affecting skeletal muscle exclusively or predominantly. From a pathogenetic perspective, we classify these diseases as primary, if the defective enzyme is directly involved in glycogen/glucose metabolism, or secondary, if the genetic mutation affects proteins which indirectly regulate glycogen or glucose processing. In addition to summarizing the most recent clinical reports in this field, we briefly describe animal models of human glycogen disorders. These experimental models are greatly improving the understanding of the pathogenetic mechanisms underlying the muscle degenerative process associated to these diseases and provide in vivo platforms to test new therapeutic strategies.

Keywords

Glycogen metabolism Glycogen storage disease Glycogenoses Cardiomyopathy Vacuolar myopathy Exercise intolerance Weakness Glycogenin Glycogen synthase Branching enzyme Debrancher Myophosphorylase Phosphorylase b kinase Phosphofructokinase Phosphoglycerate kinase Phosphoglycerate mutase Danon disease Laforin Malin Polyglucosan Lafora bodies Autophagy Second wind phenomenon AMP-activated protein kinase 

References

Papers of particular interest, published recently have been heighted as: • Of important •• Of major important

  1. 1.
    Roach PJ. Glycogen and its metabolism. Curr Mol Med. 2002;2:101–20.PubMedCrossRefGoogle Scholar
  2. 2.
    DiMauro S, Spiegel R. Progress and problems in muscle glycogenoses. Acta Myol. 2011;30:96–102.PubMedGoogle Scholar
  3. 3.
    DiMauro S, Garone C. Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med. 2011;16:181–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.PubMedCrossRefGoogle Scholar
  5. 5.
    van der Ploeg AT, Reuser AJ. Pompe's disease. Lancet. 2008;372:1342–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Moslemi AR, Lindberg C, Nilsson J, et al. Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med. 2010;362:1203–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Nilsson J, Halim A, Moslemi AR, et al. Molecular pathogenesis of a new glycogenosis caused by a glycogenin-1 mutation. Biochim Biophys Acta. 2012;1822:493–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kollberg G, Tulinius M, Gilljam T, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med. 2007;357:1507–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Pederson BA, Chen H, Schroeder JM, et al. Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol. 2004;24:7179–87.PubMedCrossRefGoogle Scholar
  10. 10.
    Moses SW, Parvari R. The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med. 2002;2:177–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Bruno C, Cassandrini D, Assereto S, et al. Neuromuscular forms of glycogen branching enzyme deficiency. Acta Myol. 2007;26:75–8.PubMedGoogle Scholar
  12. 12.
    Magoulas PL, El-Hattab AW, Roy A, et al. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review. Hum Pathol. 2012;43:943–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Bruno C, van Diggelen OP, Cassandrini D, et al. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology. 2004;63:1053–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Reusche E, Aksu F, Goebel HH, et al. A mild juvenile variant of type IV glycogenosis. Brain Dev. 1992;14:36–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Servidei S, Riepe RE, Langston C, et al. Severe cardiopathy in branching enzyme deficiency. J Pediatr. 1987;111:51–516.PubMedCrossRefGoogle Scholar
  16. 16.
    Goebel HH, Shin YS, Gullotta F, et al. Adult polyglucosan body myopathy. J Neuropathol Exp Neurol. 1992;51:24–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Lossos A, Barash V, Soffer D, et al. Hereditary branching enzyme dysfunction in adult polyglucosan body disease: a possible metabolic cause in two patients. Ann Neurol. 1991;30:655–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Bruno C, Servidei S, Shanske S, et al. Glycogen branching enzyme deficiency in adult polyglucosan body disease. Ann Neurol. 1993;33:88–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Taratuto AL, Akman HO, Saccoliti M, Riudavets M, Arakaki N, Mesa L, Sevlever G, Goebel H, DiMauro S. Branching enzyme deficiency/glycogenosis storage disease type IV presenting as a severe congenital hypotonia: muscle biopsy and autopsy findings, biochemical and molecular genetic studies. Neuromuscul Disord. 2010;20:783–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Fyfe JC, Giger U, Van Winkle TJ, et al. Glycogen storage disease type IV: inherited deficiency of branching enzyme activity in cats. Pediatr Res. 1992;32:719–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Ward TL, Valberg SJ, Adelson DL, et al. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV. Mamm Genome. 2004;15:570–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee YC, Chang CJ, Bali D, et al. Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet. 2011;20:455–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Akman HO, Sheiko T, Tay SK, et al. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV. Hum Mol Genet. 2011;20:4430–9.PubMedCrossRefGoogle Scholar
  24. 24.
    • Goldstein J, Austin S, Kishnani P, Bali D. Phosphorylase kinase deficiency. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews™ [Internet]. Seattle: University of Washington; 1993–2011 May 31. This is a comprehensive review of physiopathological and clinical features of glycogenosis type VIII.Google Scholar
  25. 25.
    Wehner M, Clemens PR, Engel AG, Kilimann MW. Human muscle glycogenosis due to phosphorylase kinase deficiency associated with a nonsense mutation in the muscle isoform of the alpha subunit. Hum Mol Genet. 1994;3:1983–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Bruno C, Manfredi G, Andreu AL, et al. A splice junction mutation in the alpha(M) gene of phosphorylase kinase in a patient with myopathy. Biochem Biophys Res Commun. 1998;249:648–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Burwinkel B, Hu B, Schroers A, et al. Muscle glycogenosis with low phosphorylase kinase activity: mutations in PHKA1, PHKG1 or six other candidate genes explain only a minority of cases. Eur J Hum Genet. 2003;11:516–26.PubMedCrossRefGoogle Scholar
  28. 28.
    Wuyts W, Reyniers E, Ceuterick C, Storm K, de Barsy T, Martin JJ. Myopathy and phosphorylase kinase deficiency caused by a mutation in the PHKA1 gene. Am J Med Genet A. 2005;133:82–4.Google Scholar
  29. 29.
    Echaniz-Laguna A, Akman HO, et al. Muscle phosphorylase b kinase deficiency revisited. Neuromuscul Disord. 2010;20:125–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Ørngreen MC, Schelhaas HJ, Jeppesen TD, et al. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology. 2008;70:1876–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Preisler N, Orngreen MC, Echaniz-Laguna A, et al. Muscle phosphorylase kinase deficiency: a neutral metabolic variant or a disease? Neurology. 2012;78:265–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Arenas J, Martín MA, Andreu AL. Glycogen storage disease type V. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews™ [Internet]. Seattle: University of Washington; 1993–2006 Apr 19 (updated 12 May 2009).Google Scholar
  33. 33.
    Lucia A, Ruiz JR, Santalla A, et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry. 2012;83:322–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Nogales-Gadea G, Rubio JC, Fernandez-Cadenas I, et al. Expression of the muscle glycogen phosphorylase gene in patients with McArdle disease: the role of nonsense-mediated mRNA decay. Hum Mutat. 2008;29:277–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Bruno C, Cassandrini D, Martinuzzi A, et al. McArdle disease: the mutation spectrum of PYGM in a large Italian cohort. Hum Mutat. 2006;27:718.PubMedCrossRefGoogle Scholar
  36. 36.
    Vissing J, Duno M, Schwartz M, Haller RG. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain. 2009;132:1545–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Quinlivan R, Buckley J, James M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81:1182–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Haller RG, Vissing J. Spontaneous “second wind” and glucose-induced second “second wind” in McArdle disease: oxidative mechanisms. Arch Neurol. 2002;59:1395–402.PubMedCrossRefGoogle Scholar
  39. 39.
    • Lucia A, Nogales-Gadea G, Perez M, et al. McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol. 2008;4:568–77. This is a comprehensive review of clinical features and management aspects of glycogenosis type V. PubMedCrossRefGoogle Scholar
  40. 40.
    Angelos S, Valberg SJ, Smith BP, et al. Myophosphorylase deficiency associated with rhabdomyolysis and exercise intolerance in 6 related charolais cattle. Muscle Nerve. 1995;18:736–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Tan P, Allen JG, Wilton SD, et al. A splice-site mutation causing ovine McArdle's disease. Neuromuscul Disord. 1997;7:336–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Nogales-Gadea G, Pinós T, Lucia A, et al. Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. Brain. 2012;135:2048–57.PubMedCrossRefGoogle Scholar
  43. 43.
    • Kishnani PS, Austin SL, Arn P, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12:446–63. This is a comprehensive review of physiopathological and clinical features of glycogenosis type III. PubMedCrossRefGoogle Scholar
  44. 44.
    Goldstein JL, Austin SL, Boyette K, et al. Molecular analysis of the AGL gene: identification of 25 novel mutations and evidence of genetic heterogeneity in patients with glycogen storage disease type III. Genet Med. 2010;12:424–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Vertilus SM, Austin SL, Foster KS, et al. Echocardiographic manifestations of glycogen storage disease III: increase in wall thickness and left ventricular mass over time. Genet Med. 2010;12:413–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Gregory BL, Shelton GD, Bali DS, Chen YT, Fyfe JC. Glycogen storage disease type IIIa in curly-coated retrievers. J Vet Intern Med. 2007;21:40–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Yi H, Thurberg BL, Curtis S, et al. Characterization of a canine model of glycogen storage disease type IIIa. Dis Model Mech. 2012;5:804–11.Google Scholar
  48. 48.
    Nakajima H, Raben N, Hamaguchi T, Yamasaki T. Phosphofructokinase deficiency; past, present and future. Curr Mol Med. 2002;2:197–212.PubMedCrossRefGoogle Scholar
  49. 49.
    Toscano A, Musumeci O. Tarui disease and distal glycogenoses: clinical and genetic update. Acta Myol. 2007;26:105–7.PubMedGoogle Scholar
  50. 50.
    Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62(1):82–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Musumeci O, Bruno C, Mongini T, et al. Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD type VII). Neuromuscul Disord. 2012;22:325–30.PubMedCrossRefGoogle Scholar
  52. 52.
    García M, Pujol A, Ruzo A, et al. Phosphofructo-1-kinase deficiency leads to a severe cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS Genet. 2009;5:e1000615.PubMedCrossRefGoogle Scholar
  53. 53.
    Beutler E. PGK deficiency. Br J Haematol. 2007;136:3–11.PubMedCrossRefGoogle Scholar
  54. 54.
    Spiegel R, Area Gomez E, Akman HO, et al. Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromusc Disord. 2009;19:207–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Sotiriou E, Greene P, Krishna S, et al. Myopathy and parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve. 2010;41:707–10.PubMedGoogle Scholar
  56. 56.
    Naini A, Toscano A, Musumeci O, et al. Muscle phosphoglycerate mutase deficiency revisited. Arch Neurol. 2009;66:394–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Kanno T, Maekawa M. Lactate dehydrogenase M-subunit deficiencies: clinical features, metabolic background, and genetic heterogeneities. Muscle Nerve. 1995;3:S54–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Kreuder J, Borkhardt A, Repp R, et al. Inherited metabolic myopathy and hemolysis due to a mutation in aldolase a. N Engl J Med. 1996;334:1100–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Comi GP, Fortunato F, Lucchiari S, et al. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol. 2001;50:202–7.PubMedCrossRefGoogle Scholar
  60. 60.
    •• Stojkovic T, Vissing J, Petit F, et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009;361:425–7. The is the first description of this new glycogen disorder. PubMedCrossRefGoogle Scholar
  61. 61.
    Delgado-Escueta AV. Advances in Lafora progressive myoclonus epilepsy. Curr Neurol Neurosci Rep. 2007;7:428–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Minassian BA, Lee JR, Herbrick JA, et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet. 1998;20:171–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Vilchez D, Ros S, Cifuentes D, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007;10:1407–13.PubMedCrossRefGoogle Scholar
  64. 64.
    DePaoli-Roach AA, Tagliabracci VS, Segvich DM, et al. Genetic depletion of the malin E3 ubiquitin ligase in mice leads to Lafora bodies and the accumulation of insoluble laforin. J Biol Chem. 2010;285:25372–81.PubMedCrossRefGoogle Scholar
  65. 65.
    • Turnbull J, Wang P, Girard JM, et al. Glycogen hyperphosphorylation underlies Lafora body formation. Ann Neurol. 2010;68:925–33. This article defines the relevance of glycogen phosphate accumulation in a mouse model of malin deficiency. PubMedCrossRefGoogle Scholar
  66. 66.
    Ganesh S, Delgado-Escueta AV, Sakamoto T, et al. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet. 2002;11:1251–62.PubMedCrossRefGoogle Scholar
  67. 67.
    • Tagliabracci VS, Turnbull J, Wang W, et al. Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci USA. 2007;104:19262–6. This article defines the relevance of glycogen phosphate accumulation in a mouse model of laforin deficiency. PubMedCrossRefGoogle Scholar
  68. 68.
    Puri R, Ganesh S. Autophagy defects in Lafora disease: cause or consequence? Autophagy. 2012;8:289–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Delgado-Escueta AV. Lafora progressive myoclonus epilepsy: glycogen storage disease vs neurodegenerative disease. Neurology. 2012;79:21–2.PubMedCrossRefGoogle Scholar
  70. 70.
    Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895–908.PubMedCrossRefGoogle Scholar
  71. 71.
    Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol. 2002;317:309–23.PubMedCrossRefGoogle Scholar
  72. 72.
    Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002;109:357–62.PubMedGoogle Scholar
  73. 73.
    Akman HO, Sampayo JN, Ross FA, et al. Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr Res. 2007;62:499–504.PubMedCrossRefGoogle Scholar
  74. 74.
    Arad M, Moskowitz IP, Patel VV, et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-white syndrome in glycogen storage cardiomyopathy. Circulation. 2003;107:2850–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Costford SR, Kavaslar N, Ahituv N, et al. Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle. PLoS One. 2007;2:e903.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Elisabetta Gazzerro
    • 1
  • Antoni L. Andreu
    • 2
  • Claudio Bruno
    • 1
  1. 1.Center of Myology, Pediatric Neurology Unit, Department of Neuroscience and RehabilitationG. Gaslini InstituteGenoaItaly
  2. 2.Laboratori de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR)Universitat Autonoma de BarcelonaBarcelonaSpain

Personalised recommendations